第J6周:ResNeXt-50实战解析

前期工作

  • 语言环境:Python3.9.18
  • 编译器:Jupyter Lab
  • 深度学习环境:Pytorch 1.12.1

1.设置GPU

import torch
import torch.nn as nn
import torchvision
from torchvision import transforms,datasets

import os,PIL,random,pathlib

device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
device

2. 导入数据

import os,PIL,random,pathlib

data_dir = "F:/365data/P4/"
data_dir = pathlib.Path(data_dir)

data_paths = list(data_dir.glob('*'))
classeNames = [str(path).split("\\")[3] for path in data_paths]
classeNames
total_datadir = 'F:/365data/P4/'

train_transforms = transforms.Compose([
    transforms.Resize([224, 224]),  # 将输入图片resize成统一尺寸
    transforms.ToTensor(),          # 将PIL Image或numpy.ndarray转换为tensor,并归一化到[0,1]之间
    transforms.Normalize(           # 标准化处理-->转换为标准正太分布(高斯分布),使模型更容易收敛
        mean=[0.485, 0.456, 0.406], 
        std=[0.229, 0.224, 0.225])  # 其中 mean=[0.485,0.456,0.406]与std=[0.229,0.224,0.225] 从数据集中随机抽样计算得到的。
])

total_data = datasets.ImageFolder(total_datadir,transform=train_transforms)
total_data

3.划分训练集测试集

train_size = int(0.8 * len(total_data))
test_size  = len(total_data) - train_size
train_dataset, test_dataset = torch.utils.data.random_split(total_data, [train_size, test_size])
train_dataset, test_dataset
batch_size = 32

train_dl = torch.utils.data.DataLoader(train_dataset,
                                           batch_size=batch_size,
                                           shuffle=True,
                                           num_workers=1)
test_dl = torch.utils.data.DataLoader(test_dataset,
                                          batch_size=batch_size,
                                          shuffle=True,
                                          num_workers=1)
for X, y in test_dl:
    print("Shape of X [N, C, H, W]: ", X.shape)
    print("Shape of y: ", y.shape, y.dtype)
    break

4.数据可视化

import matplotlib.pyplot as plt 
from PIL import Image

image_folder = 'F:/365data/P4/Monkeypox/'

image_files = [f for f in os.listdir(image_folder) if f.endswith(('.jpg','.jpeg','.png'))]

fig,axes = plt.subplots(3,8,figsize=(16,6))

for ax,img_file in zip(axes.flat,image_files):
    img_path = os.path.join(image_folder,img_file)
    img = PIL.Image.open(img_path)
    ax.imshow(img)
    ax.axis('off')

plt.tight_layout()
plt.show()

二、构建ResNet-50模型

1.构造模型

import torch.nn.functional as F

# 构造ResNeXt50模型
class ResNeXtblock(nn.Module):
    def __init__(self,in_channels,out_channels,stride=1,carinality=32):
        super(ResNeXtblock,self).__init__()
        D = out_channels*2
        C = carinality
        self.blockconv = nn.Sequential(
            nn.Conv2d(in_channels,out_channels*2,kernel_size=1,stride=stride),
            nn.BatchNorm2d(out_channels*2),
            nn.ReLU(),
            nn.Conv2d(out_channels*2,out_channels*2,kernel_size=3,stride=1,padding=1,groups=C),
            nn.BatchNorm2d(out_channels*2),
            nn.ReLU(),
            nn.Conv2d(out_channels*2,out_channels*4,kernel_size=1,stride=1),
            nn.BatchNorm2d(out_channels*4)
        )
        if stride !=1 or in_channels != out_channels*4:
            self.shortcut = nn.Sequential(
                nn.Conv2d(in_channels,out_channels*4,kernel_size=1,stride=stride),
                nn.BatchNorm2d(out_channels*4)
            )

    def forward(self,x):
            residual = x 
            out = self.blockconv(x)
            if hasattr(self,'shortcut'):
                residual = self.shortcut(x)
            out += residual
            out = F.relu(out)
            return out
    
class ResNeXt50(nn.Module):
    def __init__(self,block,num_classes=1000):
          super(ResNeXt50,self).__init__()

          self.conv1 = nn.Sequential(
               nn.ZeroPad2d(3),
               nn.Conv2d(3,64,kernel_size=7,stride=2),
               nn.BatchNorm2d(64),
               nn.ReLU(),
               nn.MaxPool2d((3,3),stride=2)
          )
          self.in_channels = 64

          self.layer1 = self.make_layer(ResNeXtblock,64,3,stride =1)
          self.layer2 = self.make_layer(ResNeXtblock,128,4,stride=2) # 设置步长是为了减小特征图的尺寸,即宽高缩小一倍:1、捕捉到更大范围内的上下文信息2、有效减少模型参数数量和计算量,有助于控制模型复杂性和防止过拟合。
          self.layer3 = self.make_layer(ResNeXtblock,256,6,stride=2)
          self.layer4 = self.make_layer(ResNeXtblock,512,3,stride=2)

          self.avgpool = nn.AvgPool2d((7,7))
          self.fc = nn.Linear(512*4,num_classes)

    def make_layer(self,block,channels,num_blocks,stride=1):
         strides = [stride] + [1]*(num_blocks-1)
         layers = []
         
         for stride in strides:
              layers.append(block(self.in_channels,channels,stride))
              self.in_channels = channels*4
              
         return nn.Sequential(*layers)
         
    def forward(self,x):
         out = self.conv1(x)
         out = self.layer1(out)
         out = self.layer2(out)
         out = self.layer3(out)
         out = self.layer4(out)
         out = self.avgpool(out)
         out = out.view(out.size(0),-1)
         out = self.fc(out)

         return out
import re
import torch.utils.model_zoo as model_zoo
from torchvision.models.resnet import model_urls

def resnet50(pretrained=False,**kwargs):
    model = ResNeXt50(block=ResNeXtblock,num_classes=len(classeNames),**kwargs)

    if pretrained:
        state_dict = model_zoo.load_url(model_urls['resnet50'])
        state_dict.pop('fc.weight')
        state_dict.pop('fc.bias')
        model.load_state_dict(state_dict,strict=False)
        nn.init.kaiming_normal_(model.fc.weight)
        nn.init.zeros_(model.fc.bias)
    
    return model

model = resnet50(pretrained=False).to(device)
model

2. 统计模型参数

# 统计模型参数量以及其他指标
import torchsummary as summary
summary.summary(model, (3, 224, 224))
----------------------------------------------------------------
        Layer (type)               Output Shape         Param #
================================================================
         ZeroPad2d-1          [-1, 3, 230, 230]               0
            Conv2d-2         [-1, 64, 112, 112]           9,472
       BatchNorm2d-3         [-1, 64, 112, 112]             128
              ReLU-4         [-1, 64, 112, 112]               0
         MaxPool2d-5           [-1, 64, 55, 55]               0
            Conv2d-6          [-1, 128, 55, 55]           8,320
       BatchNorm2d-7          [-1, 128, 55, 55]             256
              ReLU-8          [-1, 128, 55, 55]               0
            Conv2d-9          [-1, 128, 55, 55]           4,736
      BatchNorm2d-10          [-1, 128, 55, 55]             256
             ReLU-11          [-1, 128, 55, 55]               0
           Conv2d-12          [-1, 256, 55, 55]          33,024
      BatchNorm2d-13          [-1, 256, 55, 55]             512
           Conv2d-14          [-1, 256, 55, 55]          16,640
      BatchNorm2d-15          [-1, 256, 55, 55]             512
     ResNeXtblock-16          [-1, 256, 55, 55]               0
           Conv2d-17          [-1, 128, 55, 55]          32,896
      BatchNorm2d-18          [-1, 128, 55, 55]             256
             ReLU-19          [-1, 128, 55, 55]               0
           Conv2d-20          [-1, 128, 55, 55]           4,736
      BatchNorm2d-21          [-1, 128, 55, 55]             256
             ReLU-22          [-1, 128, 55, 55]               0
           Conv2d-23          [-1, 256, 55, 55]          33,024
      BatchNorm2d-24          [-1, 256, 55, 55]             512
     ResNeXtblock-25          [-1, 256, 55, 55]               0
           Conv2d-26          [-1, 128, 55, 55]          32,896
      BatchNorm2d-27          [-1, 128, 55, 55]             256
             ReLU-28          [-1, 128, 55, 55]               0
           Conv2d-29          [-1, 128, 55, 55]           4,736
      BatchNorm2d-30          [-1, 128, 55, 55]             256
             ReLU-31          [-1, 128, 55, 55]               0
           Conv2d-32          [-1, 256, 55, 55]          33,024
      BatchNorm2d-33          [-1, 256, 55, 55]             512
     ResNeXtblock-34          [-1, 256, 55, 55]               0
           Conv2d-35          [-1, 256, 28, 28]          65,792
      BatchNorm2d-36          [-1, 256, 28, 28]             512
             ReLU-37          [-1, 256, 28, 28]               0
           Conv2d-38          [-1, 256, 28, 28]          18,688
      BatchNorm2d-39          [-1, 256, 28, 28]             512
             ReLU-40          [-1, 256, 28, 28]               0
           Conv2d-41          [-1, 512, 28, 28]         131,584
      BatchNorm2d-42          [-1, 512, 28, 28]           1,024
           Conv2d-43          [-1, 512, 28, 28]         131,584
      BatchNorm2d-44          [-1, 512, 28, 28]           1,024
     ResNeXtblock-45          [-1, 512, 28, 28]               0
           Conv2d-46          [-1, 256, 28, 28]         131,328
      BatchNorm2d-47          [-1, 256, 28, 28]             512
             ReLU-48          [-1, 256, 28, 28]               0
           Conv2d-49          [-1, 256, 28, 28]          18,688
      BatchNorm2d-50          [-1, 256, 28, 28]             512
             ReLU-51          [-1, 256, 28, 28]               0
           Conv2d-52          [-1, 512, 28, 28]         131,584
      BatchNorm2d-53          [-1, 512, 28, 28]           1,024
     ResNeXtblock-54          [-1, 512, 28, 28]               0
           Conv2d-55          [-1, 256, 28, 28]         131,328
      BatchNorm2d-56          [-1, 256, 28, 28]             512
             ReLU-57          [-1, 256, 28, 28]               0
           Conv2d-58          [-1, 256, 28, 28]          18,688
      BatchNorm2d-59          [-1, 256, 28, 28]             512
             ReLU-60          [-1, 256, 28, 28]               0
           Conv2d-61          [-1, 512, 28, 28]         131,584
      BatchNorm2d-62          [-1, 512, 28, 28]           1,024
     ResNeXtblock-63          [-1, 512, 28, 28]               0
           Conv2d-64          [-1, 256, 28, 28]         131,328
      BatchNorm2d-65          [-1, 256, 28, 28]             512
             ReLU-66          [-1, 256, 28, 28]               0
           Conv2d-67          [-1, 256, 28, 28]          18,688
      BatchNorm2d-68          [-1, 256, 28, 28]             512
             ReLU-69          [-1, 256, 28, 28]               0
           Conv2d-70          [-1, 512, 28, 28]         131,584
      BatchNorm2d-71          [-1, 512, 28, 28]           1,024
     ResNeXtblock-72          [-1, 512, 28, 28]               0
           Conv2d-73          [-1, 512, 14, 14]         262,656
      BatchNorm2d-74          [-1, 512, 14, 14]           1,024
             ReLU-75          [-1, 512, 14, 14]               0
           Conv2d-76          [-1, 512, 14, 14]          74,240
      BatchNorm2d-77          [-1, 512, 14, 14]           1,024
             ReLU-78          [-1, 512, 14, 14]               0
           Conv2d-79         [-1, 1024, 14, 14]         525,312
      BatchNorm2d-80         [-1, 1024, 14, 14]           2,048
           Conv2d-81         [-1, 1024, 14, 14]         525,312
      BatchNorm2d-82         [-1, 1024, 14, 14]           2,048
     ResNeXtblock-83         [-1, 1024, 14, 14]               0
           Conv2d-84          [-1, 512, 14, 14]         524,800
      BatchNorm2d-85          [-1, 512, 14, 14]           1,024
             ReLU-86          [-1, 512, 14, 14]               0
           Conv2d-87          [-1, 512, 14, 14]          74,240
      BatchNorm2d-88          [-1, 512, 14, 14]           1,024
             ReLU-89          [-1, 512, 14, 14]               0
           Conv2d-90         [-1, 1024, 14, 14]         525,312
      BatchNorm2d-91         [-1, 1024, 14, 14]           2,048
     ResNeXtblock-92         [-1, 1024, 14, 14]               0
           Conv2d-93          [-1, 512, 14, 14]         524,800
      BatchNorm2d-94          [-1, 512, 14, 14]           1,024
             ReLU-95          [-1, 512, 14, 14]               0
           Conv2d-96          [-1, 512, 14, 14]          74,240
      BatchNorm2d-97          [-1, 512, 14, 14]           1,024
             ReLU-98          [-1, 512, 14, 14]               0
           Conv2d-99         [-1, 1024, 14, 14]         525,312
     BatchNorm2d-100         [-1, 1024, 14, 14]           2,048
    ResNeXtblock-101         [-1, 1024, 14, 14]               0
          Conv2d-102          [-1, 512, 14, 14]         524,800
     BatchNorm2d-103          [-1, 512, 14, 14]           1,024
            ReLU-104          [-1, 512, 14, 14]               0
          Conv2d-105          [-1, 512, 14, 14]          74,240
     BatchNorm2d-106          [-1, 512, 14, 14]           1,024
            ReLU-107          [-1, 512, 14, 14]               0
          Conv2d-108         [-1, 1024, 14, 14]         525,312
     BatchNorm2d-109         [-1, 1024, 14, 14]           2,048
    ResNeXtblock-110         [-1, 1024, 14, 14]               0
          Conv2d-111          [-1, 512, 14, 14]         524,800
     BatchNorm2d-112          [-1, 512, 14, 14]           1,024
            ReLU-113          [-1, 512, 14, 14]               0
          Conv2d-114          [-1, 512, 14, 14]          74,240
     BatchNorm2d-115          [-1, 512, 14, 14]           1,024
            ReLU-116          [-1, 512, 14, 14]               0
          Conv2d-117         [-1, 1024, 14, 14]         525,312
     BatchNorm2d-118         [-1, 1024, 14, 14]           2,048
    ResNeXtblock-119         [-1, 1024, 14, 14]               0
          Conv2d-120          [-1, 512, 14, 14]         524,800
     BatchNorm2d-121          [-1, 512, 14, 14]           1,024
            ReLU-122          [-1, 512, 14, 14]               0
          Conv2d-123          [-1, 512, 14, 14]          74,240
     BatchNorm2d-124          [-1, 512, 14, 14]           1,024
            ReLU-125          [-1, 512, 14, 14]               0
          Conv2d-126         [-1, 1024, 14, 14]         525,312
     BatchNorm2d-127         [-1, 1024, 14, 14]           2,048
    ResNeXtblock-128         [-1, 1024, 14, 14]               0
          Conv2d-129           [-1, 1024, 7, 7]       1,049,600
     BatchNorm2d-130           [-1, 1024, 7, 7]           2,048
            ReLU-131           [-1, 1024, 7, 7]               0
          Conv2d-132           [-1, 1024, 7, 7]         295,936
     BatchNorm2d-133           [-1, 1024, 7, 7]           2,048
            ReLU-134           [-1, 1024, 7, 7]               0
          Conv2d-135           [-1, 2048, 7, 7]       2,099,200
     BatchNorm2d-136           [-1, 2048, 7, 7]           4,096
          Conv2d-137           [-1, 2048, 7, 7]       2,099,200
     BatchNorm2d-138           [-1, 2048, 7, 7]           4,096
    ResNeXtblock-139           [-1, 2048, 7, 7]               0
          Conv2d-140           [-1, 1024, 7, 7]       2,098,176
     BatchNorm2d-141           [-1, 1024, 7, 7]           2,048
            ReLU-142           [-1, 1024, 7, 7]               0
          Conv2d-143           [-1, 1024, 7, 7]         295,936
     BatchNorm2d-144           [-1, 1024, 7, 7]           2,048
            ReLU-145           [-1, 1024, 7, 7]               0
          Conv2d-146           [-1, 2048, 7, 7]       2,099,200
     BatchNorm2d-147           [-1, 2048, 7, 7]           4,096
    ResNeXtblock-148           [-1, 2048, 7, 7]               0
          Conv2d-149           [-1, 1024, 7, 7]       2,098,176
     BatchNorm2d-150           [-1, 1024, 7, 7]           2,048
            ReLU-151           [-1, 1024, 7, 7]               0
          Conv2d-152           [-1, 1024, 7, 7]         295,936
     BatchNorm2d-153           [-1, 1024, 7, 7]           2,048
            ReLU-154           [-1, 1024, 7, 7]               0
          Conv2d-155           [-1, 2048, 7, 7]       2,099,200
     BatchNorm2d-156           [-1, 2048, 7, 7]           4,096
    ResNeXtblock-157           [-1, 2048, 7, 7]               0
       AvgPool2d-158           [-1, 2048, 1, 1]               0
          Linear-159                    [-1, 2]           4,098
================================================================
Total params: 23,018,114
Trainable params: 23,018,114
Non-trainable params: 0
----------------------------------------------------------------
Input size (MB): 0.57
Forward/backward pass size (MB): 292.37
Params size (MB): 87.81
Estimated Total Size (MB): 380.75
----------------------------------------------------------------

三、训练模型

1. 构建训练函数

def train(dataloader,model,optimizer,loss_fn):
    size = len(dataloader.dataset)
    num_batches = len(dataloader)

    train_acc,train_loss = 0,0

    for X,y in dataloader:
        X,y = X.to(device),y.to(device)

        pred = model(X)
        loss = loss_fn(pred,y)

        optimizer.zero_grad()
        loss.backward()
        optimizer.step()

        train_loss += loss.item()
        train_acc += (pred.argmax(1) == y).type(torch.float).sum().item()

    train_loss /= num_batches
    train_acc /= size

    return train_acc,train_loss

2. 构建测试函数

def test (dataloader, model, loss_fn):
    size        = len(dataloader.dataset)  # 测试集的大小
    num_batches = len(dataloader)          # 批次数目, (size/batch_size,向上取整)
    test_loss, test_acc = 0, 0
    
    # 当不进行训练时,停止梯度更新,节省计算内存消耗
    with torch.no_grad():
        for imgs, target in dataloader:
            imgs, target = imgs.to(device), target.to(device)
            
            # 计算loss
            target_pred = model(imgs)
            loss        = loss_fn(target_pred, target)
            
            test_loss += loss.item()
            test_acc  += (target_pred.argmax(1) == target).type(torch.float).sum().item()

    test_acc  /= size
    test_loss /= num_batches

    return test_acc, test_loss

3. 优化器和学习率

loss_fn = nn.CrossEntropyLoss()
learn_rate = 1e-4
opt = torch.optim.Adam(model.parameters(),lr=learn_rate)
import copy 

epochs = 20

train_loss=[]
train_acc=[]
test_loss=[]
test_acc=[]
best_acc = 0

for epoch in range(epochs):

    model.train()
    epoch_train_acc,epoch_train_loss = train(train_dl,model,opt,loss_fn)

    model.eval()
    epoch_test_acc,epoch_test_loss = test(test_dl,model,loss_fn)

    if epoch_test_acc > best_acc:
        best_acc = epoch_test_acc
        best_model = copy.deepcopy(model)

    train_acc.append(epoch_train_acc)
    train_loss.append(epoch_train_loss)
    test_acc.append(epoch_test_acc)
    test_loss.append(epoch_test_loss)

    lr = opt.state_dict()['param_groups'][0]['lr']

    template = ('Epoch:{:2d}, Train_acc:{:.1f}%, Train_loss:{:.3f}, Test_acc:{:.1f}%, Test_loss:{:.3f}, Lr:{:.2E}')
    print(template.format(epoch+1, epoch_train_acc*100, epoch_train_loss, 
                          epoch_test_acc*100, epoch_test_loss, lr))

# 保存最佳模型到文件中
PATH = 'F:/365data/J6best_model.pth'  # 保存的参数文件名
torch.save(best_model.state_dict(), PATH)

print('Done')
Epoch: 1, Train_acc:56.2%, Train_loss:0.757, Test_acc:66.9%, Test_loss:0.586, Lr:1.00E-04
Epoch: 2, Train_acc:68.0%, Train_loss:0.602, Test_acc:67.8%, Test_loss:0.723, Lr:1.00E-04
Epoch: 3, Train_acc:71.7%, Train_loss:0.558, Test_acc:61.1%, Test_loss:0.745, Lr:1.00E-04
Epoch: 4, Train_acc:70.3%, Train_loss:0.572, Test_acc:73.4%, Test_loss:0.544, Lr:1.00E-04
Epoch: 5, Train_acc:76.1%, Train_loss:0.506, Test_acc:76.5%, Test_loss:0.513, Lr:1.00E-04
Epoch: 6, Train_acc:79.2%, Train_loss:0.464, Test_acc:75.8%, Test_loss:0.527, Lr:1.00E-04
Epoch: 7, Train_acc:79.3%, Train_loss:0.449, Test_acc:72.0%, Test_loss:0.588, Lr:1.00E-04
Epoch: 8, Train_acc:81.0%, Train_loss:0.431, Test_acc:73.4%, Test_loss:0.800, Lr:1.00E-04
Epoch: 9, Train_acc:84.9%, Train_loss:0.348, Test_acc:82.8%, Test_loss:0.402, Lr:1.00E-04
Epoch:10, Train_acc:86.6%, Train_loss:0.311, Test_acc:80.0%, Test_loss:0.503, Lr:1.00E-04
Epoch:11, Train_acc:88.7%, Train_loss:0.272, Test_acc:80.0%, Test_loss:0.562, Lr:1.00E-04
Epoch:12, Train_acc:88.5%, Train_loss:0.283, Test_acc:80.7%, Test_loss:0.517, Lr:1.00E-04
Epoch:13, Train_acc:90.0%, Train_loss:0.234, Test_acc:86.0%, Test_loss:0.396, Lr:1.00E-04
Epoch:14, Train_acc:90.4%, Train_loss:0.226, Test_acc:80.4%, Test_loss:0.462, Lr:1.00E-04
Epoch:15, Train_acc:92.9%, Train_loss:0.169, Test_acc:84.1%, Test_loss:0.452, Lr:1.00E-04
Epoch:16, Train_acc:94.0%, Train_loss:0.153, Test_acc:81.8%, Test_loss:0.490, Lr:1.00E-04
Epoch:17, Train_acc:94.9%, Train_loss:0.131, Test_acc:84.1%, Test_loss:0.465, Lr:1.00E-04
Epoch:18, Train_acc:93.8%, Train_loss:0.157, Test_acc:83.2%, Test_loss:0.455, Lr:1.00E-04
Epoch:19, Train_acc:94.3%, Train_loss:0.154, Test_acc:80.9%, Test_loss:0.560, Lr:1.00E-04
Epoch:20, Train_acc:94.7%, Train_loss:0.141, Test_acc:84.8%, Test_loss:0.429, Lr:1.00E-04
Done

5. 模型评估

import matplotlib.pyplot as plt
#隐藏警告
import warnings
warnings.filterwarnings("ignore")               #忽略警告信息
plt.rcParams['font.sans-serif']    = ['SimHei'] # 用来正常显示中文标签
plt.rcParams['axes.unicode_minus'] = False      # 用来正常显示负号
plt.rcParams['figure.dpi']         = 100        #分辨率

epochs_range = range(epochs)

plt.figure(figsize=(12, 3))
plt.subplot(1, 2, 1)

plt.plot(epochs_range, train_acc, label='Training Accuracy')
plt.plot(epochs_range, test_acc, label='Test Accuracy')
plt.legend(loc='lower right')
plt.title('Training and Validation Accuracy')

plt.subplot(1, 2, 2)
plt.plot(epochs_range, train_loss, label='Training Loss')
plt.plot(epochs_range, test_loss, label='Test Loss')
plt.legend(loc='upper right')
plt.title('Training and Validation Loss')
plt.show()

在这里插入图片描述

总结

  • 我将原tensorflow代码改完了pytorch代码
  • 本节使用了分组卷积方法,在pytorch中,在nn.Conv2d()中使用参数groups可以很容易实现分组卷积方法
  • 7
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值