关于(求和符号∑)不可不知的事情

本文探讨了求和符号∑的基本概念及其在多重求和中的应用,包括求和顺序的交换条件和限制,以及求和在等比级数中的实际应用。文章通过实例解析了求和符号的正确使用方法,以及如何处理复杂的多重求和表达式。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

文章向导

从单重求和谈起(定义与基本性质)
多重求和(二重情况)
求和的实际应用(等比级数)

引言:
  求和符号经常活跃于数学或工程实际问题中,特别是处于多重求和情况时,连用的求和符号存在运算的优先顺序,有时我们可以直接互换不同求和符号之间的位置,而有时不同的位置则代表不同的求和意义。因此,关于求和符号∑的问题还是很有必要进行一番细致的讨论。


一、从单重求和谈起
  我们通过一个稍微简单的例子来回顾下求和符号的使用(如下所示)。∑i=110g(k,l)h(i,j)=g(k,l)∑i=110h(i,j) \sum_{i=1}^{10}{g\left( k,l \right) h\left( i,j \right)}=g\left( k,l \right) \sum_{i=1}^{10}{h\left( i,j \right)}i=110g(k,l)h(i,j)=g(k,l)i=110h(i,j)
  求和符号展开的关键在于替换所有的计数下标,本例中g(k,l)g\left( k,l \right)g(k,l)与计数下标i无关,故可直接提取到求和符号外。最终结果如下所示:g(k,l)(h(1,j)+h(2,j)+⋅⋅⋅+h(10,j)) g\left( k,l \right) \left( h\left( \text{1,}j \right) +h\left( \text{2,}j \right) +···+h\left( \text{10,}j \right) \right) g(k,l)(h(1,j)+h(2,j)++h(10,j))

二、多重求和(二重情况)
  当出现两个及以上的求和符号时,它们之间必然存在着某种运算的优先顺序。为便于理解和阅读,我们也可以适当对其添加括号来明确这种运算顺序。比如下面这样:∑i=13∑j=14f(i,j)=∑i=13(∑j=14f(i,j))=∑i=13(f(i,1)+f(i,2)+f(i,3)+f(i,4)) \sum_{i=1}^3{\sum_{j=1}^4{f\left( i,j \right) =\sum_{i=1}^3{\left( \sum_{j=1}^4{f\left( i,j \right)} \right)}}}=\sum_{i=1}^3{\left( f\left( i,1 \right) +f\left( i,2 \right) +f\left( i,3 \right) +f\left( i,4 \right) \right)}i=13j=14f(i,j)=i=13(j=14f(i,j))=i=13(f(i,1)+f(i,2)+f(i,3)+f(i,4))
  实际上,由于计数下标i和j的范围不同,上述双重求和表达式中的两个求和符号的顺序可以互换,即可以写成下面这种形式:∑i=13∑j=14f(i,j)=∑j=14∑i=13f(i,j) \sum_{i=1}^3{\sum_{j=1}^4{f\left( i,j \right) =\sum_{j=1}^4{\sum_{i=1}^3{f\left( i,j \right)}}}}i=13j=14f(i,j)=j=14i=13f(i,j)
  既然存在可以直接互换的情况,那么也必然存在求和符号顺序不可直接互换的情况,比如下面这个例子,如果强行直接互换两者,那么其表达式的意义也就发生了变化。
  
原式:∑i=14∑j=1if(i,j)原式:\sum_{i=1}^4{\sum_{j=1}^i{f\left( i,j \right)}}i=14j=1if(i,j)  (2-1)

错误的表达式:∑j=1i∑i=14f(i,j)错误的表达式:\sum_{j=1}^i{\sum_{i=1}^4{f\left( i,j \right)}}j=1ii=14f(i,j) (2-2)

意义已变:∑j=14∑i=1jf(i,j)意义已变:\sum_{j=1}^4{\sum_{i=1}^j{f\left( i,j \right)}}j=14i=1jf(i,j) (2-3)
  首先分析下式(2-1),由于j的范围取决于i,因此我们不能直接互换两个求和符号的顺序。如果强行互换得到式(2-2),将得到一个错误的表达式,其错误之处在于∑j=1i\sum_{j=1}^i{}j=1i已经使用了计数下标i,所以内层求和符号不能再使用i作为计数下标。
  那么,如(2-3)这样机械式的互换是否又是可行的呢?答案是否定的,虽然如此互换后得到的式子是正确的,但含义却已改变(与原式对比很容易观察到)。
  
  正确的替换方式如下所示,到此的读者可以用心感悟下它与前面几种做法的区别:∑i=14∑j=1if(i,j)=∑j=14∑i=j4f(i,j)\sum_{i=1}^4{\sum_{j=1}^i{f\left( i,j \right) =\sum_{j=1}^4{\sum_{i=j}^4{f\left( i,j \right)}}}}i=14j=1if(i,j)=j=14i=j4f(i,j)
  等式两边可以按照穷举法的思路来进行理解,为便于说明笔者将给出一份表格来辅助解释。(等式左右两边都表示表格中所有项相加之和)
  在这里插入图片描述
  左边:穷举i的取值,内层元素求和,在表格中体现为依次横排相加。
  右边:穷举j的取值,内层元素求和,在表格中体现为竖排相加。
  
  最后,谈一个小技巧(也是容易出错的地方)。比如下面这个式子,简单理解来看,似乎可以直接将平方展开。但正如前面所说,由于外层求和使用了计数下标i,故内层必须使用其他字母来作为计数下标。
(∑i=15f(i))2=(∑i=15f(i))∗(∑i=15f(i))≠∑i=15∑i=15f(i)f(i) \left( \sum_{i=1}^5{f\left( i \right)} \right) ^2=\left( \sum_{i=1}^5{f\left( i \right)} \right) *\left( \sum_{i=1}^5{f\left( i \right)} \right) \ne \sum_{i=1}^5{\sum_{i=1}^5{f\left( i \right) f\left( i \right)}} (i=15f(i))2=(i=15f(i))(i=15f(i))=i=15i=15f(i)f(i)

故正确的表达形式应该改为如下所示(内层计数下标为j)
(∑i=15f(i))2=(∑i=15f(i))∗(∑i=15f(i))=∑i=15∑j=15f(i)f(j) \left( \sum_{i=1}^5{f\left( i \right)} \right) ^2=\left( \sum_{i=1}^5{f\left( i \right)} \right) *\left( \sum_{i=1}^5{f\left( i \right)} \right) =\sum_{i=1}^5{\sum_{j=1}^5{f\left( i \right) f\left( j \right)}} (i=15f(i))2=(i=15f(i))(i=15f(i))=i=15j=15f(i)f(j)
三、求和的实际应用(等比级数)
  等比数列{aia_iai}其求和公式可以描述为如下的形式(设m⩽nm\leqslant nmn,其中r为公比,通项公式为ai=ria_i=r^iai=ri):
∑i=mnri=rm−rn+11−r=a1−an∙r1−r  (r≠1) \sum_{i=m}^n{r^i=\frac{r^m-r^{n+1}}{1-r}}=\frac{a_1-a_n\bullet r}{1-r}\,\,\left( r\ne 1 \right) i=mnri=1rrmrn+1=1ra1anr(r=1)
  当n→∞n\rightarrow \inftyn时,上述就成为了等比级数,此时等式转换为:
∑i=1∞ri=r1−r    (∣r∣<1)(3−1) \sum_{i=1}^{\infty}{r^i=\frac{r}{1-r}\,\,\,\,\left( |r|<1 \right)} (3-1) i=1ri=1rr(r<1)31
  当∣r∣⩾1|r|\geqslant 1r1时,上述的求和表达式不收敛。
  借助式(3-1)与微分的特性,我们还能导出另一条有用的结论。先对(3-1)式关于r进行微分,然后两边乘以r可得到如下等式:
(先微分) ∑i=1∞iri−1=1(1−r)2 (先微分) \sum_{i=1}^{\infty}i{r^{i-1}=\frac{1}{\left( 1-r \right) ^2}}  i=1iri1=(1r)21
(两边同乘以r)∑i=1∞iri=r(1−r)2  (∣r∣<1)(3−2) (两边同乘以r)\sum_{i=1}^{\infty}{ir^i=\frac{r}{\left( 1-r \right) ^2}}\,\,\left( |r|<1 \right) (3-2) ri=1iri=(1r)2r(r<1)32
  最后得到的(3-2)式也是经常会用到的结论,希望读者能掌握这种推导演算思路。

参阅资料
程序员的数学(概率统计)
高等数学(同济6版)
普林斯顿微积分读本

评论 14
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值