机器学习_降维

降维算法用于将高维数据映射到低维空间,保持数据的主要特征,同时减少噪声和计算复杂度。以下是几种常见的降维算法及其详细讲解:

1. 主成分分析(PCA)

原理

主成分分析通过线性变换将数据投影到主成分方向上,这些方向是数据方差最大的方向,且彼此正交。PCA 选择包含最多信息(方差)的方向,通常通过特征值分解或奇异值分解(SVD)实现。

步骤:

  1. 标准化数据,使每个特征的均值为 0,方差为 1。
  2. 计算数据协方差矩阵。
  3. 对协方差矩阵进行特征值分解,得到特征值和特征向量。
  4. 选择最大的 K 个特征值对应的特征向量,作为降维后的主成分。
  5. 将原始数据投影到这些主成分上。

公式:
协方差矩阵C:
C = 1 n − 1 X T X \mathbf{C} = \frac{1}{n-1} \mathbf{X}^T \mathbf{X} C=n11XTX

PCA 投影:
Z = X W \mathbf{Z} = \mathbf{X} \mathbf{W} Z=XW
其中,W 是包含前 K 个特征向量的矩阵。

使用场景

适用于需要降维和特征提取的场景,如图像处理、文本分析、噪声过滤。

优缺点

优点:

  • 简单高效
  • 能解释为保留最大方差的信息

缺点:

  • 只能捕捉线性关系
  • 对异常值敏感
代码实例
from sklearn.decomposition import PCA
import numpy as np

# 示例数据集(假设数据已准备好)
X = np.array([[2.5, 2.4], [0.5, 0.7], [2.2, 2.9], [1.9, 2.2], [3.1, 3.0], [2.3, 2.7], [2, 1.6], [1, 1.1], [1.5, 1.6], [1.1, 0.9]])

# 模型训练
pca = PCA(n_components=2)
X_reduced = pca.fit_transform(X)

print(X_reduced)

2. 线性判别分析(LDA)

原理

线性判别分析是一种监督学习降维方法,旨在通过最大化类间方差和最小化类内方差来找到数据的最佳投影方向。LDA 寻找能够最有效地将不同类别分开的线性组合。

步骤:

  1. 计算每个类别的均值向量。
  2. 计算类内散布矩阵和类间散布矩阵。
  3. 对类内散布矩阵的逆乘以类间散布矩阵,进行特征值分解。
  4. 选择最大的 K 个特征值对应的特征向量,作为降维后的投影方向。
  5. 将数据投影到这些方向上。

公式:
类内散布矩阵 Sw和类间散布矩阵 Sb:
S W = ∑ c = 1 C ∑ x i ∈ D c ( x i − m c ) ( x i − m c ) T \mathbf{S}_W = \sum_{c=1}^C \sum_{\mathbf{x}_i \in D_c} (\mathbf{x}_i - \mathbf{m}_c)(\mathbf{x}_i - \mathbf{m}_c)^T SW=c=1CxiDc(ximc)(ximc)T
S B = ∑ c = 1 C n c ( m c − m ) ( m c − m ) T \mathbf{S}_B = \sum_{c=1}^C n_c (\mathbf{m}_c - \mathbf{m})(\mathbf{m}_c - \mathbf{m})^T SB=c=1Cnc(mcm)(mcm)T
其中,mc是第 c 类的均值向量,m 是总体均值向量,nc是第 c 类的样本数。

使用场景

适用于分类任务中的降维,如人脸识别、文本分类。

优缺点

优点:

  • 适用于有标签的数据
  • 增强类间分离

缺点:

  • 只能捕捉线性关系
  • 需要类别标签
代码实例
from sklearn.discriminant_analysis import LinearDiscriminantAnalysis
import numpy as np

# 示例数据集(假设数据已准备好)
X = np.array([[4.0, 2.0], [2.0, 4.0], [2.0, 3.0], [3.0, 6.0], [4.0, 4.0], [9.0, 10.0], [6.0, 8.0], [9.0, 5.0], [8.0, 7.0], [10.0, 8.0]])
y = np.array([0, 0, 0, 0, 0, 1, 1, 1, 1, 1])

# 模型训练
lda = LinearDiscriminantAnalysis(n_components=1)
X_reduced = lda.fit_transform(X, y)

print(X_reduced)

3. t-分布随机邻域嵌入(t-SNE)

原理

t-SNE 是一种非线性降维方法,特别适用于高维数据的可视化。它通过将高维空间中的相似性保留在低维空间中,生成的低维表示能够揭示数据的簇结构。

步骤:

  1. 在高维空间中,计算每对样本的条件概率,表示相似性。
  2. 在低维空间中,随机初始化样本点位置。
  3. 迭代优化,最小化高维空间和低维空间中样本对的相似性分布差异(KL散度)。

公式:
高维空间中相似性的条件概率:
P j ∣ i = exp ⁡ ( − ∥ x i − x j ∥ 2 / 2 σ i 2 ) ∑ k ≠ i exp ⁡ ( − ∥ x i − x k ∥ 2 / 2 σ i 2 ) P_{j|i} = \frac{\exp(-\|\mathbf{x}_i - \mathbf{x}_j\|^2 / 2\sigma_i^2)}{\sum_{k \neq i} \exp(-\|\mathbf{x}_i - \mathbf{x}_k\|^2 / 2\sigma_i^2)} Pji=k=iexp(xixk2/2σi2)exp(xixj2/2σi2)

低维空间中相似性的条件概率:
Q i j = ( 1 + ∥ y i − y j ∥ 2 ) − 1 ∑ k ≠ l ( 1 + ∥ y k − y l ∥ 2 ) − 1 Q_{ij} = \frac{(1 + \|\mathbf{y}_i - \mathbf{y}_j\|^2)^{-1}}{\sum_{k \neq l} (1 + \|\mathbf{y}_k - \mathbf{y}_l\|^2)^{-1}} Qij=k=l(1+ykyl2)1(1+yiyj2)1

目标函数(KL散度):
K L ( P ∥ Q ) = ∑ i ∑ j P i j log ⁡ P i j Q i j KL(P \| Q) = \sum_i \sum_j P_{ij} \log \frac{P_{ij}}{Q_{ij}} KL(PQ)=ijPijlogQijPij

使用场景

适用于高维数据的可视化,如图像数据、基因表达数据。

优缺点

优点:

  • 保留局部结构
  • 适合数据可视化

缺点:

  • 计算复杂度高
  • 难以扩展到大规模数据
代码实例
from sklearn.manifold import TSNE
import numpy as np

# 示例数据集(假设数据已准备好)
X = np.array([[0.1, 0.2], [0.2, 0.1], [0.9, 0.8], [0.8, 0.9], [0.4, 0.6], [0.6, 0.4], [0.5, 0.5], [0.2, 0.3], [0.7, 0.7], [0.3, 0.2]])

# 模型训练
tsne = TSNE(n_components=2, random_state=0)
X_reduced = tsne.fit_transform(X)

print(X_reduced)

4. 自编码器(Autoencoder)

原理

自编码器是一种神经网络,通过学习压缩表示来实现降维。自编码器由编码器和解码器组成,编码器将输入数据映射到低维隐含层,解码器从隐含层重建输入数据。

步骤:

  1. 构建自编码器网络,定义编码器和解码器。
  2. 使用输入数据训练自编码器,最小化重构误差。
  3. 训练完成后,提取编码器的输出作为降维结果。

公式:
编码器:
h = σ ( W e x + b e ) h = \sigma(\mathbf{W}_e \mathbf{x} + \mathbf{b}_e) h=σ(Wex+be)

解码器:
x ^ = σ ( W d h + b d ) \hat{\mathbf{x}} = \sigma(\mathbf{W}_d h + \mathbf{b}_d) x^=σ(Wdh+bd)

损失函数(重构误差):
L ( x , x ^ ) = ∥ x − x ^ ∥ 2 L(\mathbf{x}, \hat{\mathbf{x}}) = \|\mathbf{x} - \hat{\mathbf{x}}\|^2 L(x,x^)=xx^2

使用场景

适用于非线性降维和特征

学习,如图像压缩、异常检测。

优缺点

优点:

  • 能处理非线性关系
  • 可扩展到大规模数据

缺点:

  • 训练时间长
  • 需要大量数据
代码实例
import numpy as np
import tensorflow as tf
from tensorflow.keras.models import Model
from tensorflow.keras.layers import Input, Dense

# 示例数据集(假设数据已准备好)
X = np.array([[0.1, 0.2], [0.2, 0.1], [0.9, 0.8], [0.8, 0.9], [0.4, 0.6], [0.6, 0.4], [0.5, 0.5], [0.2, 0.3], [0.7, 0.7], [0.3, 0.2]])

# 构建自编码器
input_dim = X.shape[1]
encoding_dim = 2

input_layer = Input(shape=(input_dim,))
encoded = Dense(encoding_dim, activation='relu')(input_layer)
decoded = Dense(input_dim, activation='sigmoid')(encoded)

autoencoder = Model(input_layer, decoded)
encoder = Model(input_layer, encoded)

autoencoder.compile(optimizer='adam', loss='mean_squared_error')

# 模型训练
autoencoder.fit(X, X, epochs=1000, batch_size=1, shuffle=True, verbose=0)

# 使用编码器进行降维
X_reduced = encoder.predict(X)

print(X_reduced)

5. 核主成分分析(Kernel PCA)

原理

核主成分分析通过使用核函数将数据映射到高维特征空间,再在该空间进行PCA,从而能够捕捉数据的非线性结构。常用的核函数包括多项式核、高斯核和sigmoid核。

步骤:

  1. 选择核函数并计算核矩阵。
  2. 对核矩阵进行中心化。
  3. 计算中心化核矩阵的特征值和特征向量。
  4. 选择前K个特征值对应的特征向量,将数据映射到低维空间。

公式:
核矩阵K:
K i j = κ ( x i , x j ) K_{ij} = \kappa(\mathbf{x}_i, \mathbf{x}_j) Kij=κ(xi,xj)
其中,k是核函数。

中心化核矩阵:
K ′ = K − 1 N K − K 1 N + 1 N K 1 N \mathbf{K}' = \mathbf{K} - \mathbf{1}_N \mathbf{K} - \mathbf{K} \mathbf{1}_N + \mathbf{1}_N \mathbf{K} \mathbf{1}_N K=K1NKK1N+1NK1N
其中,1N 是 N *N 的全1矩阵。

使用场景

适用于数据具有复杂非线性结构的场景,如人脸识别、图像处理。

优缺点

优点:

  • 能捕捉非线性关系
  • 灵活性强

缺点:

  • 计算复杂度高
  • 需要选择和调优核函数
代码实例
from sklearn.decomposition import KernelPCA
import numpy as np

# 示例数据集(假设数据已准备好)
X = np.array([[0.1, 0.2], [0.2, 0.1], [0.9, 0.8], [0.8, 0.9], [0.4, 0.6], [0.6, 0.4], [0.5, 0.5], [0.2, 0.3], [0.7, 0.7], [0.3, 0.2]])

# 模型训练
kpca = KernelPCA(n_components=2, kernel='rbf')
X_reduced = kpca.fit_transform(X)

print(X_reduced)

总结

不同的降维算法有各自的特点和适用场景。在实际应用中,选择合适的降维算法需要根据数据的特点和具体需求进行权衡,并且可以通过实验和调参来优化降维效果。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值