梯度下降法

梯度下降法是一种基于搜索的最优化方法,作用是最小化一个损失函数(最大化效用函数用梯度上升法)。

我们首先来明晰两个概念
方向导数:函数 z = f ( x , y ) z=f(x,y) z=f(x,y)在点 ( x 0 , y 0 ) (x_0,y_0) (x0,y0)沿方向 l ⃗ \vec{l} l 的方向导数

∂ f ∂ l = lim ⁡ ρ → 0 + f ( x 0 + ρ cos ⁡ α , y 0 + ρ cos ⁡ β ) − f ( x 0 , y 0 ) ρ \frac{\partial f}{\partial l}=\lim_{\rho \rightarrow 0^+}\frac{f(x_0+\rho \cos{\alpha}, y_0+\rho \cos{\beta})-f(x_0,y_0)}{\rho} lf=limρ0+ρf(x0+ρcosα,y0+ρcosβ)f(x0,y0)

∂ f ∂ l \frac{\partial f}{\partial l} lf是函数 z z z对点 ( x 0 , y 0 ) (x_0,y_0) (x0,y0)沿方向 l ⃗ \vec{l} l ρ \rho ρ的变化率,也是曲面 z z z在点 ( x 0 , y 0 ) (x_0,y_0) (x0,y0)沿方向 l ⃗ \vec{l} l 的倾斜程度。

梯度:向量 ( ∂ f ∂ x , ∂ f ∂ y ) (\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}) (xf,yf)是使 f ( x , y ) f(x,y) f(x,y)在一点增加最快的方向,称向量 ( ∂ f ∂ x , ∂ f ∂ y ) (\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}) (xf,yf)为可微函数 z = f ( x , y ) z=f(x,y) z=f(x,y)在点 ( x , y ) (x,y) (x,y)处的梯度向量,简称梯度。

记作:
▽ f = ( ∂ f ∂ x , ∂ f ∂ y ) = ∂ f ∂ x i + ∂ f ∂ y j \bigtriangledown f=(\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y})=\frac{\partial f}{\partial x}i+\frac{\partial f}{\partial y}j f=(xf,yf)=xfi+yfj

梯度 ▽ f \bigtriangledown f f是一个向量,是可微函数 z = f ( x , y ) z=f(x,y) z=f(x,y)在点 ( x , y ) (x,y) (x,y)处取得最大方向导数的方向(即函数增加最快的方向)。

最小二乘法的梯度

目标函数: J ( θ ) = ( y − X θ ) T ( y − X θ ) J(\theta)=(y-X\theta)^T(y-X\theta) J(θ)=(yXθ)T(yXθ)
梯度: ▽ θ J = 2 X T ( X θ − y ) \bigtriangledown_{\theta}J=2X^T(X\theta -y) θJ=2XT(Xθy)

感知机算法的梯度

目标函数: J ( w , b ) = − ∑ x ∈ M y ( i ) ( w T x ( i ) + b ) J(w,b)=-\sum_{x\in M}y^{(i)}(w^Tx^{(i)}+b) J(w,b)=xMy(i)(wTx(i)+b)
梯度: ▽ w J = − ∑ x ∈ M y ( i ) x ( i ) \bigtriangledown_{w}J=-\sum_{x\in M}y^{(i)}x^{(i)} wJ=xMy(i)x(i)
▽ b J = − ∑ x ∈ M y ( i ) \bigtriangledown_{b}J=-\sum_{x\in M}y^{(i)} bJ=xMy(i)

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值