DeepEP 的定义与核心特性
DeepEP(DeepSeeker Expert Parallelism)是由中国人工智能公司深度求索(DeepSeeker)推出的开源分布式并行通信库,专注于优化混合专家模型(Mixture-of-Experts, MoE)的训练和推理性能,解决大规模分布式计算中的通信效率问题。
核心功能与技术特性
-
高效通信架构
- 全对全通信(All-to-All):针对 MoE 模型的分发(Dispatch)和组合(Combine)操作,优化 GPU 间数据传输,支持节点内 NVLink 和跨节点 RDMA 网络,节点内带宽可达 153 GB/s,跨节点带宽达 43-47 GB/s。
- 低延迟推理:通过纯 RDMA 技术实现分发操作端到端延迟低至 163 微秒,组合操作延迟 318 微秒,显著提升实时推理效率。
-
低精度计算支持
- 原生支持 FP8(8 位浮点) 数据格式,显存占用减少 50%,同时允许 FP8 分发与 BF16 组合的混合精度操作,兼顾显存优化与计算精度。
-
动态资源管理
- GPU 资源控制:支持灵活分配流式多处理器(SM)数量,通过 Hook 机制实现通信与计算重叠,减少资源闲置。
- 异构网络优化:针对 NVLink(节点内)与 RDMA(节点间)的非对称带宽场景,优化跨域数据传输效率。
-
兼容性与部署要求
- 硬件:适配 Hopper 架构 GPU(如 H100/H800),依赖 NVLink(节点内)和 RDMA(跨节点)网络。
- 软件:需 Python 3.8+、CUDA 12.3+、PyTorch 2.1+,集成定制版 NVSHMEM 库。
性能表现
- 训练场景:在千卡级 H800 GPU 集群中,MoE 模型训练效率提升 3.8 倍,节点内 NVLink 带宽达 153 GB/s,跨节点 RDMA 带宽达 43-47 GB/s。
- 推理场景:70B 参数 MoE 模型单请求延迟 <200 ms,吞吐量达 1200 token/s,响应速度提升 35%。
应用场景
-
大规模模型训练
适用于千亿级参数 MoE 模型的分布式训练任务,如自然语言模型(NLP)的预训练与微调。 -
实时推理服务
支持智能客服、金融实时分析等低延迟场景,例如实时生成风险评估报告或多轮对话交互。 -
高性能计算(HPC)
优化科学计算、数据分析等场景的跨节点数据传输效率,适配 InfiniBand 和 RoCE 网络。
开源与生态
- 开源协议:核心代码采用 MIT 许可证,部分依赖库(如 NVSHMEM)遵循 NVIDIA 协议。
- 生态整合:兼容 PyTorch、TensorFlow 等主流框架,提供企业级部署工具链和多场景优化指南。
总结
DeepEP 通过通信流程优化与动态资源管理,显著提升了 MoE 模型的训练与推理效率,降低分布式计算的硬件成本。其开源特性为开发者提供了高性能、低门槛的分布式解决方案,尤其适用于需要处理大规模数据和实时响应的 AI 应用场景。