一、Focal Loss的详细解析
一、提出背景
Focal Loss的提出主要是为了解决在目标检测等任务中常见的类别不平衡问题,特别是在正负样本比例极不均衡的情况下,模型往往会被大量简单样本(如背景)所主导,导致对少数类样本(如目标物体)的学习不足。此外,传统的损失函数(如交叉熵损失)在处理难易样本时也存在一定的问题,即模型容易对简单样本过度拟合,而忽视难分类样本的学习。
二、时间与作者
Focal Loss最早由Facebook AI Research (FAIR)的研究团队在2017年提出,并在论文《Focal Loss for Dense Object Detection》中详细阐述。该论文的主要作者是何恺明(Kaiming He),他因在深度学习领域的杰出贡献而广受赞誉。
三、解决问题
Focal Loss主要解决了以下几个问题:
-
类别不平衡:通过调整正负样本的权重,使得模型在训练过程中更加关注少数类样本。
-
难易样本不平衡:通过引入调制因子(modulating factor),降低易分类样本的损失贡献,增大难分类样本的损失贡献,使得模型更加关注难分