以下是YOLOv1至YOLOv12损失函数的对比解析,结合各版本的核心改进与损失函数设计特点:
YOLO系列损失函数对比表
版本 | 定位损失 | 分类损失 | 置信度损失 | 关键改进与新增模块 |
---|---|---|---|---|
v1 | 均方误差(MSE) | 交叉熵损失(CE) | 交叉熵损失(CE) | 首次提出端到端检测框架,损失函数由三部分构成 |
v2 | 基于Anchor的MSE + 宽高平方根惩罚 | Softmax多分类 | 动态IoU阈值筛选 | 引入Anchor机制,宽高损失采用平方根降低大目标主导性 |
v3 | 二元交叉熵(BCE) | 多标签Sigmoid分类 | 二元交叉熵(BCE) | 多尺度预测、残差网络,分类损失支持多标签共存 |
v4 | CIoU Loss(综合重叠面积、中心点距离、宽高比) | <