【YOLO】YOLOv1至YOLOv12损失函数的对比解析

以下是YOLOv1至YOLOv12损失函数的对比解析,结合各版本的核心改进与损失函数设计特点:


YOLO系列损失函数对比表

<
版本 定位损失 分类损失 置信度损失 关键改进与新增模块
v1 均方误差(MSE) 交叉熵损失(CE) 交叉熵损失(CE) 首次提出端到端检测框架,损失函数由三部分构成
v2 基于Anchor的MSE + 宽高平方根惩罚 Softmax多分类 动态IoU阈值筛选 引入Anchor机制,宽高损失采用平方根降低大目标主导性
v3 二元交叉熵(BCE) 多标签Sigmoid分类 二元交叉熵(BCE) 多尺度预测、残差网络,分类损失支持多标签共存
v4 CIoU Loss(综合重叠面积、中心点距离、宽高比)
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

浩瀚之水_csdn

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值