Ultralytics 框架中 model.train() 方法的核心参数详解与使用指南

以下是 ​Ultralytics 框架中 model.train() 方法的核心参数详解与使用指南,结合 YOLOv12 最新特性(截至 2025 年 3 月)进行技术解析:


一、核心训练参数解析

  1. 模型与任务配置

    • model:支持加载预训练权重(.pt)或从零训练(.yaml)。例如:
      • yolov12n.pt(Nano 尺寸预训练模型)
      • yolov12x-obb.yaml(自定义旋转框检测模型结构)
    • task:指定任务类型,包括 detect(检测)、segment(分割)、pose(姿态估计)等。
  2. 训练过程控制

    • epochs:训练轮次,工业场景推荐 100-300 轮,小数据集可减少至
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

浩瀚之水_csdn

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值