内存访问成本(MAC)的核心解析与优化策略

内存访问成本(Memory Access Cost, MAC)是衡量深度学习模型效率的关键指标,直接影响模型在硬件上的推理速度和资源消耗。以下从定义、影响因素、优化方法及实际应用四个维度展开分析:


一、MAC的定义与计算

MAC指模型在推理过程中从内存读取和写入数据的总开销,包括输入特征图、输出特征图及权重的访问次数。以卷积层为例:

例如,输入224×224×3的卷积层与32个3×3卷积核运算时,MAC高达约4375万次。


二、MAC对模型速度的关键影响
  1. 硬件瓶颈效应
    内存访问速度远低于计算速度,尤其在大模型中,MAC可能成为性能瓶颈。例如,EfficientNet的FLOPs虽低于ResNet50,但因深度可分离卷积的高MAC特性,实际推理速度反而更慢。

  2. 并行度与数据依赖
    多分支结构(如Inception)会引入数据依赖,降低GPU并行度,增加同步开销。例如,残差网络(ResNet)的

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

浩瀚之水_csdn

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值