BModel(Binary Model)是算能(SOPHGO)专为其TPU芯片设计的高性能模型格式,通过编译器工具链将主流框架模型(如PyTorch、TensorFlow)转换为适配算能硬件的二进制文件,实现高效推理。以下是其核心特性与应用解析:
一、BModel 的核心价值
-
硬件适配优化
- 指令级优化:通过TPU-MLIR编译器将模型算子转换为TPU指令集(如BM1684/BM1688支持的特定操作码),最大化利用芯片算力。
- 内存布局重排:根据TPU的片上内存(Local Memory)特性,优化张量存储顺序(如NHWC→NCHW),减少数据搬运开销。
-
量化与压缩支持
- 全流程量化:支持训练后量化(PTQ)与量化感知训练(QAT),将FP32