在YOLACT中,基础分割模板(原型掩模) 是模型实现实时实例分割的核心组件。它们是一组通过轻量级网络(Protonet)生成的全局特征模式,用于动态组合生成实例级掩码。以下是其本质、生成方式及作用的详细解析:
一、原型掩模的定义与结构
原型掩模(Prototype Masks) 是一组由 Protonet 生成的全局分割模板,每个模板对应一种基础分割模式(如边缘、纹理、形状等)。这些模板与具体实例无关,但可通过线性组合动态生成任意实例的掩码。
-
基本概念:
- 原型掩模(Prototype Masks) 是一组全局的、类别无关的二维矩阵,每个矩阵表示一种基础分割模式(如边缘、纹理、几何形状等)。
- 这些掩模覆盖输入图像的所有位置,但通过检测分支预测的系数动态激活,最终生成实例级分割结果。
-
维度与生成过程:
- 输入特征:通常来自主干网络(如ResNet-FPN)的P3层,尺寸为
[
- 输入特征:通常来自主干网络(如ResNet-FPN)的P3层,尺寸为