YOLOv12 作为 YOLO 系列的最新迭代,通过 动态标签分配、多任务协同优化 和 几何建模增强 等关键技术,进一步提升了目标检测的精度与鲁棒性。其损失函数在继承 YOLO 系列经典设计的基础上,引入了多项创新性改进,以下从核心模块、关键技术改进与性能优化三方面展开解析:
一、损失函数核心组成
YOLOv12 的总损失函数延续了多任务协同优化的设计理念,由 定位损失(CIoU-Pro)、置信度损失(Dynamic Focal Loss) 和 分类损失(Meta-Contrastive Loss) 构成:
权重配置:λloc=0.8, λconf=0.3, λcls=0.2(定位损失权重较高,符合目标检测任务的核心需求)。