蔡高厅高等数学37-罗必塔法则

第二节 罗必塔法则

如果 x->x0 (x -> ∞)时,f(x) 与 φ(x) 同为无穷小,则称
lim(x->x0 x->∞)) f(x) / φ 为 “0”/ 0 型未定式

同理
“∞”/∞ 型 未定式
法则 1

假设

(1 ) f(x) φ(x) 在 (x0,δ)
(2) f(x) , φ(x) 在 N(x0,δ) 内 可导 ,且 φ'(x) <>0
(3) lim(x->x0) f'(x) / φ'(x) ,存在或为∞
==》lim(x->x0) f(x) / φ(x) = lim(x-x0) f'(x) / φ'(x) 或为∞
则:
证明:8m

假设 f(x) = 0, φ(x) = 0 ,
可导连续
柯西定理


例1 , 求 lim (x->1 ) x^3 -3x +2 / x^3 - x^2 -x + 1
解:

例2 求 lim (x->0) x- sinx / xsinx^2
注意: 使用等价无穷小替换

注意:原来函数的导数比不存在, 原来的函数的比的值可能是存在的

例 3 lim(x->0) x^2 sim1/x / sinx

推论1
设:(1) f(x),φ(x)在|x| > N >0 时 , 有定义

且 lim(x->无穷) , limφ(x) = 0,

(2) 当|x| > N, f'(x) , φ'(x) 存在, 且 φ'(x) <>0,
(3)lim(x->∞)f’(x) / φ'(x) 存在,
则 limx->∞存在, 且 limx->x0, f(x) / φ(x) = lim(x->x0) f'(x) / φ'(x)

证明:

练习:
4-2 1(1)(3)(4)(5)(6)











评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值