第二节 罗必塔法则
如果 x->x0 (x -> ∞)时,f(x) 与 φ(x) 同为无穷小,则称
lim(x->x0 x->∞)) f(x) / φ 为 “0”/ 0 型未定式
同理
“∞”/∞ 型 未定式
法则 1
假设
(1 ) f(x) φ(x) 在 (x0,δ)
(2) f(x) , φ(x) 在 N(x0,δ) 内 可导 ,且 φ'(x) <>0
(3) lim(x->x0) f'(x) / φ'(x) ,存在或为∞
==》lim(x->x0) f(x) / φ(x) = lim(x-x0) f'(x) / φ'(x) 或为∞
则:
证明:8m
假设 f(x) = 0, φ(x) = 0 ,
可导连续
柯西定理
例1 , 求 lim (x->1 ) x^3 -3x +2 / x^3 - x^2 -x + 1
解:
例2 求 lim (x->0) x- sinx / xsinx^2
注意: 使用等价无穷小替换
注意:原来函数的导数比不存在, 原来的函数的比的值可能是存在的
例 3 lim(x->0) x^2 sim1/x / sinx
推论1
设:(1) f(x),φ(x)在|x| > N >0 时 , 有定义
且 lim(x->无穷) , limφ(x) = 0,
(2) 当|x| > N, f'(x) , φ'(x) 存在, 且 φ'(x) <>0,
(3)lim(x->∞)f’(x) / φ'(x) 存在,
则 limx->∞存在, 且 limx->x0, f(x) / φ(x) = lim(x->x0) f'(x) / φ'(x)
证明:
练习:
4-2 1(1)(3)(4)(5)(6)