贪心算法

1. 贪心算法

        对于许多最优化问题,使用动态规划算法来求最优解有些杀鸡用牛刀了,可以使用更加简单、更加高效的算法。贪心算法就是这样的算法,它在每一步做出当时看起来最佳的选择。也就是说它总是做出局部最优的选择,从而得到全局最优解。

        对于某些问题并不保证得到最0优解,但对很多问题确实可以求得最优解。

2.活动选择问题

        有n个需要在同一天使用同一个教室的活动a1,a2,…,an,教室同一时刻只能由一个活动使用。每个活动ai都有一个开始时间si和结束时间fi。一旦被选择后,活动ai就占据半开时间区间[si,fi)。如果[si,fi]和[sj,fj]互不重叠,ai和aj两个活动就可以被安排在这一天。该问题就是要安排这些活动使得尽量多的活动能不冲突的举行(最大兼容活动子集)。例如下图所示的活动集合S,其中各项活动按照结束时间单调递增排序。

        {a3,a9,a11}是一个兼容的活动子集,但它不是最大子集,因为子集{a1,a4,a8,a11}更大,实际上它是我们这个问题的最大兼容子集,但它不是唯一的一个{a2a4a9a11}

2.1动态规划算法解决思路

      我们使用Sij代表在活动ai结束之后,且在aj开始之前的那些活动的集合,我们使用c[i,j]代表Sij的最大兼容活动子集的大小,对于上述问题就是求c[0,12]的解
  a, i>=j-1或者Sij中没有任何活动元素的时候, c[i,j]=0
  b,当i<j-1
  1Sij不存在活动,c[i,j]=0
  2Sij存在活动的时候,c[i,j]=max{c[i,k]+c[k,j]+1}  ak属于Sij,这里是遍历Sij的集合,然后求得最大兼容子集

2.2贪心算法

          想要使用贪心算法的话,得先找到适合贪心算法的规律(局部最优选择)
  对于任何非空的活动集合S,假如amS中结束时间最早的活动,则am一定在S的某个最大兼容活动子集中。
(如何证明上面的结论?反证法)

  递归解决

  迭代解决

3.代码实现

3.1 活动选择问题_动态规划_自底向上

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using System.Threading.Tasks;

namespace _513_活动选择问题_动态规划_自底向上
{
    class Program
    {
        static void Main(string[] args)
        {
            int[] s = { 0, 1, 3, 0, 5, 3, 5, 6, 8, 8, 2, 12, 24 };
            int[] f = { 0, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 24 };

            List<int>[,] result = new List<int>[13, 13];
            for(int m=0;m<13;m++)
            {
                for(int n=0;n<13;n++)
                {
                    result[m, n] = new List<int>();
                }
            }


            for(int j=0;j<13;j++)
            {
                for(int i=0;i<j-1;i++)
                {
                    //s[i,j],代表i结束之后,j开始之前的活动集合
                    //f[i]  s[j]这个时间区间内的所有活动
                    List<int> sij = new List<int>();
                    for(int number=1;number<s.Length-1;number++)
                    {
                        if(s[number]>=f[i]&&f[number]<=s[j])
                        {
                            sij.Add(number);
                        }
                    }
                    if(sij.Count>0)
                    {
                        //result[i,j]=max{result[i,k]+result[k,j]+k}
                        int maxCount = 0;
                        List<int> tempList = new List<int>();
                        foreach(int number in sij)
                        {
                            int count = result[i, number].Count + result[number, j].Count+1;
                            if(maxCount<count)
                            {
                                maxCount = count;
                                tempList = result[i, number].Union<int>(result[number, j]).ToList<int>();
                                tempList.Add(number);
                            }
                        }
                        result[i, j] = tempList;
                    }
                }
            }
            List<int> l = result[0, 12];
            foreach(int temp in l)
            {
                Console.WriteLine(temp);
            }
            Console.ReadKey();
        }
    }
}

3.2 活动选择问题_贪心算法_递归解决

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using System.Threading.Tasks;

namespace _514_活动选择问题_贪心算法_递归解决
{
    class Program
    {
        static void Main(string[] args)
        {
            List<int> list = ActivitySelection(1, 11, 0, 24);

            foreach(int temp in list)
            {
                Console.WriteLine( temp);
                
            }
            Console.ReadKey();
        }
        static int[] s = { 0, 1, 3, 0, 5, 3, 5, 6, 8, 8, 2, 12, 24 };
        static int[] f = { 0, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 24 };


        public static List<int> ActivitySelection(int startActivityNumber,int endActivityNumber,int startTime,int endTime)
        {
            if(startActivityNumber>endActivityNumber||startTime>endTime)//递归终止条件
            {
                return new List<int>();
            }
            //找到结束时间最早的活动
            int tempNumber=0;
            for(int number=startActivityNumber;number<=endActivityNumber;number++)
            {
                if(s[number]>=startTime&&f[number]<=endTime)
                {
                    tempNumber = number;
                    break;
                }
            }
            List<int> list = ActivitySelection(tempNumber + 1, endActivityNumber, f[tempNumber], endTime);
            list.Add(tempNumber);
            return list;
        }
    }
}

3.3 活动选择问题_贪心算法_迭代解决

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using System.Threading.Tasks;

namespace _515_活动选择问题_贪心算法_迭代解决
{
    class Program
    {
        static void Main(string[] args)
        {
            int[] s = { 0, 1, 3, 0, 5, 3, 5, 6, 8, 8, 2, 12, 24 };
            int[] f = { 0, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 24 };

            int startTime = 0;
            int endTime = 24;
            List<int> list = new List<int>();
            for(int number=1;number<=11;number++)
            {
                if(s[number]>=startTime&&f[number]<=endTime)
                {
                    list.Add(number);
                    startTime = f[number];
                }
            }
            foreach(int temp in list)
            {
                Console.WriteLine(temp);
            }
            Console.ReadKey();
        }
    }
}

4. 钱币找零

        这个问题在我们的日常生活中就更加普遍了。假设1元、2元、5元、10元、20元、50元、100元的纸币分别有c0,c1, c2, c3, c4, c5, c6张。现在要用这些钱来支付K元,至少要用多少张纸币?用贪心算法的思想,很显然,每一步尽可能用面值大的纸币即可。
intCount[N]={3,0,2,1,0,3,5}; 

intValue[N]={1,2,5,10,20,50,100};  

4.1 钱币找零_贪心算法

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using System.Threading.Tasks;

namespace _516_钱币找零_贪心算法
{
    class Program
    {
        static void Main(string[] args)
        {
            int[] count = { 3, 0, 2, 1, 0, 3, 5 };//每种面额钱币的张数
            int[] amount = { 1, 2, 5, 10, 20, 50, 100 };//拥有的钱币面额

            int[] result = Change(320, count, amount);

            foreach(int temp in result)
            {
                Console.Write(temp+" ");

            }
            Console.ReadKey();
        }
        /// <summary>
        /// 钱币找零
        /// </summary>
        /// <param name="k">需要找零的总金额</param>
        /// <param name="count"></param>
        /// <param name="amount"></param>
        /// <returns></returns>
        public static int[] Change(int k,int[] count,int[] amount)
        {
            int index = amount.Length - 1;//得到最大面值的钱币索引
            int[] result = new int[count.Length + 1];//保存每种面额的钱换出了多少张,最后一位保存为换的金额
            while(true)
            {
                if (index == -1 || k <= 0) break;//当index==-1(所有的钱都被换完了)或者已经将k换完了,循环结束
                if (k > count[index]*amount[index])//将所有的100拿出来都不够换时
                {
                    result[index] = count[index];
                    k -= count[index] * amount[index];
                }
                else
                {
                    result[index]= k / amount[index];
                    k -= result[index] * amount[index];
                }

                index--;
            }
            result[amount.Length] = k;
            return result;
        }
    }
}

阅读更多
想对作者说点什么?

博主推荐

换一批

没有更多推荐了,返回首页