【TensorFlow】如何用TensorFlow写一个最基本的神经网络?(第一课)

目录

用TensorFlow写一个最基本的神经网络!

1、计算图(计算模型)

什么是计算图?怎么用?

2、张量(数据模型)

2.1、一般直接输出的计算结果,是一个张量的结构。主要包含三个属性:name,shape,type。

2.2、张量也可以用来获取计算结果,也就是真实的数字。语句:

3、会话(运行模型)

4、开始吧,你的第一个神经网络!

4.1、神经网络简介

4.2、前向传播算法

4.3、神经网络参数和TensorFlow变量

4.4、如何训练神经网络?

反向传播算法的流程图:

【补充知识点】palaceholder:当时不算出常量,到算结果时提供数据。

4.5、完整神经网络样例程序

网络结构:

代码:


用TensorFlow写一个最基本的神经网络!

这是最基本的网络结构,你会写吗?

先看完1,2,3节了解一下基本概念,然后在第4节看代码。

1、计算图(计算模型)

什么是计算图?怎么用?

简单说就是计算的定义。

计算图是tensorflow的计算模型,它可以用来隔离和管理张量和计算

简单说,就是可以每次只计算一个计算图,而且同名变量在不同计算图中也不同。

tf.Graph()生成,with语句管理。(with语句利用上下文管理器来包装要执行的代码块,刚好与计算图的功能吻合)

不在自己定义的计算图里的计算,系统会自动维护一个默认的计算图,通过tf.get_default_graph函数就可以获取当前默认的计算图。

import tensorflow as tf
a = tf.constant([1.0,2.0],name = 'a')
b = tf.constant([2.0,3.0],name = 'b')
result = a+b
print(result)

#通过a.graph可以查看张量所属的计算图,因为没有指定,所以这个计算图应该等于当前默认的计算图
print(a.graph is tf.get_default_graph()) #结果为True

 

2、张量(数据模型)

张量可以简单的理解为多维数组。其中零阶张量表示为标量(scalar),一阶张量表示为向量(vector),也就是一维数组;但是张量在实现中,并不真正保存数字,而是保存的是如何得到这些数字的计算过程。

2.1、一般直接输出的计算结果,是一个张量的结构。主要包含三个属性:name,shape,type。

import tensorflow as tf
a = tf.constant([1.0,2.0],name = 'a')
b = tf.constant([2.0,3.0],name = 'b')
result = a+b
print(result)
'''输出:Tensor('add:0',shape=(2,),dtype = float32)'''

2.2、张量也可以用来获取计算结果,也就是真实的数字。语句:

tf.Session().run(result)

 

3、会话(运行模型)

简单说就是计算的执行。

每一个会话管理着一个资源集合。

可以通过以下方式指定会话运行哪个图。(其中一张图可以分别被N个Session运行,而N张图不能同时运行在一个Session内)

sess = tf.Session(graph=g)

 

4、开始吧,你的第一个神经网络!

https://playground.tensorflow.org

4.1、神经网络简介

此图输入为一维张量,一般图片为三维张量。

横着叫层数,竖着叫神经元,方块是节点(中间的节点就是中间量)。

每条线一个参数,so many参数,这也是为什么能拟合那么多函数得原因。

由最后得输出层y值判定类别。

简言之,使用神经网络解决问题可以分为以下四个步骤:

(1)提取特征。

(2)定义神经网络的结构(前向传播算法)

(3)通过训练数据来调整神经网络中参数得取值。

(4)使用训练好得网络进行预测。

4.2、前向传播算法

就是确定网络结构,这个网络结构就是前向传播算法。

全连接层、卷积层、LSTM。

简单说下前向传播、反向传播:

(1)前向传播就是顺着过去得到loss值。

(2)反向传播是根据loss值,结合优化器、学习率来优化参数。

4.3、神经网络参数和TensorFlow变量

参数、变量的定义与计算。

4.4、如何训练神经网络?

神经网络优化算法中,最常见的就是反向传播算法

反向传播算法的流程图:

有两点注意一下:

(1)每一次训练中,是将训练集的一部分输入计算,而不是全部训练集,这一部分叫做batch

(2)退出训练的条件:次数达到要求,或者loss达到要求。

【补充知识点】palaceholder:当时不算出常量,到算结果时提供数据。

x=tf.palceholder(tf.float32,shape=(3,2),name="input")
...
print(sess.run(y,feed_dict={x:[[0.7,0.9],[0.1,0.4],[0.5,0.8]]}))

4.5、完整神经网络样例程序

网络结构:

代码:

import tensorflow as tf
from numpy.random import RandomState

batch_size = 8  # 反向传播的batch数

w1 = tf.Variable(tf.random_normal([2, 3], stddev=1, seed=1))
w2 = tf.Variable(tf.random_normal([3, 1], stddev=1, seed=1))

x = tf.placeholder(tf.float32, shape=(None, 2), name='x-input')
y_ = tf.placeholder(tf.float32, shape=(None, 1), name='y-input')

# 定义神经网络前向传播过程
a = tf.matmul(x, w1)
y = tf.matmul(a, w2)

# 定义损失函数和反向传播算法
cross_entropy = -tf.reduce_mean(y_ * tf.log(tf.clip_by_value(y, 1e-10, 1.0)))  # 损失函数
# 反向传播算法,一步到位
train_step = tf.train.AdamOptimizer(0.001).minimize(cross_entropy)  

# 通过随机数生成一个模拟数据集,一般这个是自己采集的
rdm = RandomState(1)
dataset_size = 128
X = rdm.rand(dataset_size, 2)
Y = [[int(x1 + x2 < 1)] for (x1, x2) in X]

# 创建一个会话来运行tensorflow程序
with tf.Session() as sess:
    init_op = tf.initialize_all_variables()
    sess.run(init_op)
    print(sess.run(w1))
    print(sess.run(w2))

    STEPS = 5000
    for i in range(STEPS):
        start = (i * batch_size) % dataset_size
        end = min(start + batch_size, dataset_size)

        # 通过选取的样本训练神经网络并更新参数
        sess.run(train_step, feed_dict={x: X[start:end], y_: Y[start:end]})
        if i % 1000 == 0:
            # 每隔一段时间计算在所有数据上的交叉熵并输出,交叉熵越小说明预测的结果和真实的结果差距越小
            total_cross_entropy = sess.run(
                cross_entropy, feed_dict={x: X, y_: Y})
            print("After %d training step,cross entropy on all data is %g" % (i, total_cross_entropy))
    print(sess.run(w1))
    print(sess.run(w2))

 

  • 1
    点赞
  • 8
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值