SE-Net:Squeeze-and-Excitation Networks论文详解

注意力机制的文章之------通道注意力

SE-Net:Squeeze-and-Excitation Networks论文详解

论文链接:https://arxiv.org/pdf/1709.01507.pdf
Github代码:https://github.com/hujie-frank/SENet

注意力机制最早用于自然语言处理(NLP),后来在计算机视觉(CV)也得到广泛的应用,之后注意力机制便被引入来进行视觉信息处理。注意力机制的核心思想就是能够从大量的信息中筛选出重要的信息。注意力机制可以分为通道注意力和空间注意力,本文主要讲的是通道注意力机制。

摘要部分

卷积神经网络的核心构件是卷积算子,它使网络能够通过融合每一层的局部感受野内的空间和通道信息来构建信息特征。大量先前的研究已经调查了这种关系的空间成分,试图通过提高整个特征层次的空间编码质量来增强CNN的代表性。在这项工作中,我们转而关注通道关系,并提出了一种新的架构单元,我们称之为“挤压和激励”(se)块,它通过显式建模通道之间的相互依赖关系,自适应地重新校准通道方向的特征响应。我们表明,这些块可以堆叠在一起,形成SENet架构,在不同的数据集上非常有效地进行概括。我们进一步证明,SE模块以轻微的额外计算成本为现有最先进的中枢神经系统带来了显著的性能提升。挤压和激励网络构成了我们的ILSVRC 2017分类提交的基础,它赢得了第一名,并将前5名的误差降低到2.251%ÿ

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值