趋势检验方法(三)Cox-stuart趋势检验

本文介绍了一种用于快速判断时间序列数据是否存在趋势的方法——Cox-Stuart趋势检验。该方法基于符号检验,通过计算差值符号的正负数量来评估趋势,并提供了Python实现示例。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Cox-stuart趋势检验

a基本原理:

Cox-Stuart是一种不依赖趋势结构的快速判断趋势是否存在的方法。

该方法的理论基础是符号检验。先假设H0和Ha(共三组),然后间隔一个时间c,生成c对差值的符号,然后分别计算符号为正和符号为负的数量,最后再对三组假设进行检验统计量计算,再判断假设是否成立。

b Cox-stuart算法理论:

c方法优缺点:

优点:不依赖趋势结构,可以快速判断出趋势是否存在。

缺点:未考虑数据的时序性,仅仅只能通过符号检验来判断。

 

d算法入口:

目前Cox-stuart检验还没有可直接调用的函数,具体Cox-stuart模板可以根据下面所写的实例去修改.

 

e实例参考:

import scipy.stats as stats


def cos_staut(x):
    n = len(x)
    xx = x  # 因为需要删除,所以复制一份
    if n % 2 == 1:
        del xx[n // 2]
    c = n // 2

    # 计算正负符号的数量
    n_pos = n_neg = 0  # n_pos=S+  n_neg=S-
    for i in range(c):
        diff = xx[i + c] - x[i]
        if diff > 0:
            n_pos += 1
        elif diff < 0:
            n_neg += 1
        else:
            continue

    num = n_pos + n_neg
    k = min(n_pos, n_neg)  # 求K值
    p_value = 2 * stats.binom.cdf(k, num, 0.5)  # 计算p_value
    print('fall:{}, rise:{}, p-value:{}'.format(n_neg, n_pos, p_value))

    # p_value<0.05,零假设不成立
    if n_pos > n_neg and p_value < 0.05:
        return 'increasing'
    elif n_neg > n_pos and p_value < 0.05:
        return 'decreasing'
    else:
        return 'no trend'

f参考文献:

百度文库 Cox-Stuart 趋势检验

https://wenku.baidu.com/view/cec731b981c758f5f61f6760.html

知乎 时序数据常用趋势检测方法

https://zhuanlan.zhihu.com/p/112703276

 

 

 

 

 

 

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值