本文提出了一种基于神经隐式表示的方法,旨在解决室内环境中部分观察到的对象的三维重建问题。通过引入类别级别的神经场(Category-level Neural Fields),我们能够学习同一类别中物体之间有意义的共通3D信息,从而改善对部分观测对象的重建质量。我们的核心思想是根据物体的观测形状进行细分,以更好地训练类别级别的模型,并利用神经场来执行困难的任务——通过基于不确定性的射线选择和对齐代表物体来进行部分观测对象的注册。在仿真和真实世界数据集上的实验结果表明,我们的方法有效提高了对多个类别下未观测部分的重建。此外,文中还讨论了神经隐式表示在视图合成和3D重建方面取得的进展,特别是强调了其相较于传统体积融合方法在处理未知区域时的优势,同时指出了当前研究在达到对象级别理解方面的不足。
### 文章概述
本文提出了一种基于神经隐式表示的方法,旨在解决室内环境中部分观察到的对象的三维重建问题。通过引入类别级别的神经场(Category-level Neural Fields),我们能够学习同一类别中物体之间有意义的共通3D信息,从而改善对部分观测对象的重建质量。我们的核心思想是根据物体的观测形状进行细分,以更好地训练类别级别的模型,并利用神经场来执行困难的任务——通过基于不确定性的射线选择和对齐代表物体来进行部分观测对象的注册。在仿真和真实世界数据集上的实验结果表明,我们的方法有效提高了对多个类别下未观测部分的重建。此外,文中还讨论了神经隐式表示在视图合成和3D重建方面取得的进展,特别是强调了其相较于传统体积融合方法在处理未知区域时的优势,同时指出了当前研究在达到对象级别理解方面的不足。
### 关键要点
1. 研究提出了一种新的神经场模型,用于重建室内环境中部分观察到的对象。
2. 该方法通过子类别分类和基于不确定性选择的方法来训练模型,并利用神经场进行对象对齐。
3. 实验结果