『Transformer系列』第7篇:Transformer的几种高效自注意力(降低计算复杂度的方法)!

本文探讨了如何优化Transformer的注意力机制以提高效率。针对原始注意力机制的高计算复杂度,介绍了Strided Attention、Reformer、Efficient Attention、Linear Attention using Kernels、Linear Attention using Taylor-Expansion、Linformer、Longformer和BigBird等方法,这些方法通过稀疏注意力、局部敏感哈希、低秩近似等策略降低计算复杂度,实现线性复杂度的注意力机制。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

第7篇:Transformer的几种高效自注意力(降低计算复杂度的方法)!

在这里插入图片描述

一. 快速回顾一下注意力机制

  • 大家好,今天的视频是我们Transformer和注意力机制系列的重要部分。我们将深入探讨如何优化注意力机制以提高其效率众所周知,原始注意力机制的内存和计算需求会随着序列长度的增加呈二次增长,使得其在处理较长序列时变得不切实际。为了解决这个问题,研究人员开发了多种方法来简化注意力机制的复杂性。在本视频中,我们将探索一些应对这一挑战的著名模型。
  • 首先,让我们快速回顾一下注意力机制。我们从三个矩阵Q、K和V开始,每个矩阵的大小为
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

AI大模型前沿研究

感谢您的打赏,我会继续努力!

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值