距离变换

距离变换是图像处理中的一个重要算法,与线性滤波器和形态学变换并列。它通过计算图像中每个像素到最近背景像素的距离来创建distance metric。此技术广泛应用于水平集、快速斜切匹配、图像拼接、羽化以及临近点配准等领域。在实现过程中,通常先进行二值化处理,然后根据Manhattan或欧氏距离计算距离。代码可用于直观展示不同距离函数的效果。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

距离变换和线性滤波器,形态学变换处于平等位置,是图像处理的一种方法,通过使用两遍扫描光栅算法可以快速计算到曲线或点集的距离。


应用:

水平集

快速斜切匹配

图像拼接

图像混合的羽化

临近点配准


方法:

首先对图像进行二值化处理,然后给每个像素赋值为离它最近的背景像素点与其距离(Manhattan距离or欧氏距离),得到distance metric(距离矩阵),那么离边界越远的点越亮。



实现:

Imgori=imread('test.jpg');
I=rgb2gray(Imgori);
subplot(2,3,1);imshow(I);title('origin');

Threshold=100;
F=I>
评论 12
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值