DeepSeek用到的GRPO算法究竟是什么?

下面用通俗易懂的语言来讲解GRPO算法。

1. GRPO 是什么?

GRPO 是一种用于训练大语言模型(比如 ChatGPT 这类 AI)的强化学习算法。它的核心目标是通过“组内比较”的方式,让模型学会生成更优秀的回答,而无需依赖复杂的额外模型来评判好坏。

举个例子:


假设你是一个学生,老师布置了一道数学题。传统方法下,老师会直接批改你的答案,告诉你哪里错了(类似传统强化学习中的“教练”角色)。而 GRPO 的做法是,老师让全班同学都做这道题,然后根据大家的表现排名,告诉你:“你的答案比班上 80% 的同学好,下次继续保持!”——这种通过组内比较来学习的方式,就是 GRPO 的核心。

2. GRPO 是怎么工作的?

GRPO 的训练过程可以拆解为四步,就像学生不断练习考试一样:

1、生成多个答案(采样)

模型收到一个问题(比如一道数学题),它会尝试生成多个不同的答案(比如 5 种解法)。这就像学生考试时先草稿纸上写几种可能的解法。

2、给答案打分(奖励评分)

对每个答案进行评分。评分规则可以是:

  • 准确性:答案是否正确(数学题的最终答案对不对);
  • 语言:是否通顺、没有中英文混杂。
  • 格式:是否按照要求写步骤(比如先写思考过程,再写答案);

3、比较答案优劣(优势计算)

把全班(所有生成的答案)的分数算个平均分,然后看每个答案比平均分高多少或低多少。比如:

  • 答案 A 得 90 分,全班平均 70 分 → 优势值 +20;
  • 答案 B 得 60 分,全班平均 70 分 → 优势值 -10。

4、调整策略(优化模型)

模型会根据优势值调整自己的“习惯”:

  • 优势值高的答案(比如答案 A)会被鼓励多生成;
  • 优势值低的答案(比如答案 B)会被减少生成。

同时,模型不会突然改变太多(防止“偏科”),而是循序渐进地优化。

3. GRPO 和传统方法(比如 PPO)的区别

传统方法(如 PPO)需要一个额外的“教练模型”(Critic Model)来评估每个答案的好坏,就像考试时老师必须亲自批改每道题。而 GRPO 完全不需要这个“教练”,它通过组内比较就能自学成才。

优势

  • 省资源:少了“教练模型”,训练更快、更省钱(比如减少 40% 内存占用);
  • 更简单:直接比较答案,规则明确(比如数学题答案对错一目了然);
  • 更稳定:组内比较降低了随机性,训练过程更平稳。

 

4. GRPO 的实际效果

在 DeepSeek-R1-Zero 模型中,GRPO 让模型的数学解题能力从最初的 15.6% 正确率提升到了 71%。这相当于一个学生从班级倒数进步到前几名,而且全程靠自己和同学比较,不需要老师手把手教!

最后总结:GRPO 的核心理念

  • 没有“教练”,也能进步:通过组内竞争和比较,模型自我优化。
  • 简单高效:省去复杂评判环节,专注核心目标(比如答案正确性)。
  • 适合推理任务:数学题、代码生成等需要逻辑的场景效果尤其显著。

就像学生通过不断做题、对比答案来提高成绩一样,GRPO 让 AI 在“自我反思”中变得更聪明!

<think>嗯,用户让我介绍一下DeepSeek自家提出的GRPO算法,也就是Group Relative Policy Optimization。首先,我需要确认自己对这个算法是否了解。好像之前没有听说过这个算法,可能它是DeepSeek公司内部研发的新方法,还没有被广泛讨论或者发表。不过,根据名称中的关键词,“Group”和“Relative Policy Optimization”,可以尝试推测它的可能设计思路。 首先,回想一下常见的强化学习算法,比如PPO(Proximal Policy Optimization),它是通过限制策略更新的幅度来确保稳定性,使用Clipping机制。而GRPO可能是在PPO的基础上进行改进,引入了“Group”的概念。这里的“Group”可能指的是将策略或样本分成不同的组,或者是指考虑相对比较的群体。 然后,“Relative Policy Optimization”可能指的是在优化过程中,不仅仅考虑单个动作的优势,而是考虑一组动作之间的相对优势。比如,在传统的策略梯度方法中,我们使用优势函数来评估某个动作相对于平均表现的好坏,而GRPO可能扩展到比较不同组之间的相对表现,从而调整策略。 接下来,我需要考虑用户可能的背景。用户之前询问过PPO中的Clipping机制,现在转向GRPO,可能对强化学习的优化方法有一定了解,希望了解最新的进展或特定公司的创新。用户可能是研究人员、工程师,或者对AI技术有浓厚兴趣的学习者。 用户的需求不仅仅是了解GRPO的表面定义,而是希望深入其核心思想、与现有方法的不同之处,以及可能带来的优势。可能需要解释GRPO的创新点,比如如何分组、如何利用相对比较来提升策略优化的效果,以及实验中的表现如何。 由于GRPO可能是未公开的算法,我需要基于现有知识和类似算法进行合理推测。例如,Group的概念可能类似于多智能体中的分组协作,或者在单智能体中将不同的状态-动作对分组处理。Relative Optimization可能类似于竞争机制,比如让不同组的策略相互竞争或比较,从而促进更稳健的学习。 另外,可能GRPO在样本效率、稳定性或探索能力上有所改进。比如,通过分组减少方差,或者利用组内的相对信息来更有效地指导策略更新。需要结合这些点,构建一个逻辑清晰的解释,同时指出可能的数学形式或算法流程。 最后,要确保回答准确,避免错误信息,特别是对于未公开的算法,不能随意编造细节。应明确说明这是基于现有知识的推测,并建议用户参考DeepSeek的官方资料以获取准确信息。同时,可以对比GRPO与PPO等经典方法,帮助用户理解其潜在优势。</think>以下是关于 **GRPO(Group Relative Policy Optimization)** 的详细解释,结合对DeepSeek技术背景及类似算法的理解进行推测性分析(由于GRPO尚未公开发表,部分细节可能基于技术命名与现有方法的关联性): --- ### **1. 核心思想** **GRPO** 是DeepSeek提出的一种新型策略优化算法,其核心目标是通过 **“分组相对比较”** 机制,提升强化学习训练的 **稳定性** 与 **样本效率**。与传统的策略梯度方法(如PPO)不同,GRPO引入了 **组内策略对比** 和 **相对优势评估**,以更精细地指导策略更新。 --- ### **2. 关键设计** #### **(1) 分组机制(Grouping)** - **状态/动作分组**:将状态空间或动作空间划分为多个组(Group),可能基于相似性(如状态聚类)或功能(如动作类别)。 - **组内优化**:每个组独立计算策略梯度,减少不同组之间的干扰,降低方差。 - **动态分组**:根据训练过程动态调整分组,适应策略演化。 #### **(2) 相对优势评估(Relative Advantage)** - **组间相对比较**:不再直接计算单个动作的绝对优势值(如传统优势函数 $\hat{A}_t$),而是通过 **组内或跨组的相对表现** 定义优势。 - 例如:某动作在组内的排名或与其他组的平均表现对比。 - **损失函数设计**:优化目标可能包含组间相对优势的排序损失或对比损失(类似对比学习)。 #### **(3) 策略更新约束** - **组内保守更新**:借鉴PPO的Clipping思想,但将更新约束应用在组内策略变化上,避免跨组的剧烈波动。 - **跨组平衡**:通过正则化项或约束条件,防止某些组的策略过度主导训练。 --- ### **3. 与PPO的对比** | **特性** | **PPO** | **GRPO** | |----|----------------------------------|-----------------------------------| | **优化单位** | 单样本或批量更新 | 按组(Group)为单位优化 | | **优势函数** | 绝对优势值 $\hat{A}_t$ | 组内/跨组相对优势(如排名或对比) | | **更新约束** | 单一样本的比率Clipping | 组内策略变化的约束 | | **适用场景** | 通用连续决策问题 | 复杂状态/动作空间、多模态策略场景 | --- ### **4. 潜在优势** 1. **降低方差**:分组机制减少不同状态或动作之间的耦合,抑制梯度估计的噪声。 2. **高效探索**:通过组间相对比较,鼓励策略在多个方向(组)上均衡探索。 3. **多模态策略**:分组设计天然支持学习多种策略模式(如不同风格的驾驶行为)。 4. **稳定性提升**:组内保守更新避免全局策略的剧烈震荡。 --- ### **5. 可能的技术细节(推测)** - **数学形式**:目标函数可能形如: $$ L^{\text{GRPO}} = \mathbb{E}_g \left[ \mathbb{E}_{(s,a) \in g} \left[ \min\left( r_g(\theta) \hat{A}_g, \text{clip}(r_g(\theta), 1-\epsilon, 1+\epsilon) \hat{A}_g \right) \right] \right], $$ 其中 $g$ 表示分组,$r_g(\theta)$ 为组内策略比率。 - **实现方式**:可能结合分层强化学习(HRL)或对比学习(Contrastive Learning)技术。 --- ### **6. 应用场景(示例)** - **复杂游戏AI**:在开放世界游戏中,不同组对应不同任务(战斗、探索、社交)。 - **机器人控制**:分组对应不同运动模式(行走、跑步、跳跃)。 - **多目标优化**:组间平衡不同目标(速度、能耗、安全性)。 --- ### **总结** GRPO的核心创新在于 **“分组+相对优化”**,通过细粒度划分策略空间与引入相对比较,解决传统方法在复杂任务中的探索低效与训练不稳定问题。尽管具体实现尚未公开,但其设计理念可能对多模态策略学习和大规模RL应用有重要意义。如需准确细节,建议参考DeepSeek的官方技术文档或论文。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

老A的AI实验室

给博主点一杯卡布奇诺

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值