机器学习(数据集准备)

一、数据集的划分
机器学习一般的数据集会划分为两个部分:
训练数据:用于训练,构建模型
测试数据:在模型检验时使用,用于评估模型是否有效
划分比例:
训练集:70% 80% 75%
测试集:30% 20% 30%

sklearn.model_selection.train_test_split(arrays, *options)
x 数据集的特征值
y 数据集的标签值
test_size 测试集的大小,一般为float
random_state:是随机数的种子。
随机数种子:其实就是该组随机数的编号,在需要重复试验的时候,保证得到一组一样的随机数。比如你每次都填1,其他参数一样的情况下你得到的随机数组是一样的。但填0或不填,每次都会不一样。
随机数的产生取决于种子,随机数和种子之间的关系遵从以下两个规则:
种子不同,产生不同的随机数;种子相同,即使实例不同也产生相同的随机数。
return ,测试集特征训练集特征值值,训练标签,测试标签(默认随机取)
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值