翻译自维基百科
数学上将第 n n n个分圆多项式写作 Φ n ( X ) \Phi_n(X) Φn(X)。
定义为:
对于任意正整数
n
n
n,
Φ
n
(
X
)
\Phi_n(X)
Φn(X)是一个不可约的首一多项式,满足
Φ
n
(
X
)
∣
x
n
−
1
\Phi_n(X)|x^n-1
Φn(X)∣xn−1,任意
k
<
n
k<n
k<n,
Φ
n
(
X
)
∤
x
k
−
1
\Phi_n(X) \nmid x^k-1
Φn(X)∤xk−1。且这个多项式的根都是单位根
e
2
i
π
k
n
e^{2i \pi \frac{k}{n}}
e2iπnk,所以这个多项式可以写为:
Φ
n
(
x
)
=
∏
1
≤
k
≤
n
gcd
(
k
,
n
)
=
1
(
x
−
e
2
i
π
k
n
)
\Phi_{n}(x)=\prod_{1 \leq k \leq n \atop \operatorname{gcd}(k, n)=1}\left(x-e^{2 i \pi \frac{k}{n}}\right)
Φn(x)=gcd(k,n)=11≤k≤n∏(x−e2iπnk)
例子:
Φ
1
(
x
)
=
x
−
1
Φ
2
(
x
)
=
x
+
1
Φ
3
(
x
)
=
x
2
+
x
+
1
Φ
4
(
x
)
=
x
2
+
1
Φ
5
(
x
)
=
x
4
+
x
3
+
x
2
+
x
+
1
Φ
6
(
x
)
=
x
2
−
x
+
1
Φ
7
(
x
)
=
x
6
+
x
5
+
x
4
+
x
3
+
x
2
+
x
+
1
Φ
8
(
x
)
=
x
4
+
1
Φ
9
(
x
)
=
x
6
+
x
3
+
1
Φ
10
(
x
)
=
x
4
−
x
3
+
x
2
−
x
+
1
Φ
11
(
x
)
=
x
10
+
x
9
+
x
8
+
x
7
+
x
6
+
x
5
+
x
4
+
x
3
+
x
2
+
x
+
1
Φ
12
(
x
)
=
x
4
−
x
2
+
1
Φ
13
(
x
)
=
x
12
+
x
11
+
x
10
+
x
9
+
x
8
+
x
7
+
x
6
+
x
5
+
x
4
+
x
3
+
x
2
+
x
+
1
Φ
14
(
x
)
=
x
6
−
x
5
+
x
4
−
x
3
+
x
2
−
x
+
1
Φ
15
(
x
)
=
x
8
−
x
7
+
x
5
−
x
4
+
x
3
−
x
+
1
Φ
16
(
x
)
=
x
8
+
1
Φ
17
(
x
)
=
x
16
+
x
15
+
x
14
+
x
13
+
x
12
+
x
11
+
x
10
+
x
9
+
x
8
+
x
7
+
x
6
+
x
5
+
x
4
+
x
3
+
x
2
+
x
+
1
Φ
18
(
x
)
=
x
6
−
x
3
+
1
Φ
19
(
x
)
=
x
18
+
x
17
+
x
16
+
x
15
+
x
14
+
x
13
+
x
12
+
x
11
+
x
10
+
x
9
+
x
8
+
x
7
+
x
6
+
x
5
+
x
4
+
x
3
+
x
2
+
x
+
Φ
20
(
x
)
=
x
8
−
x
6
+
x
4
−
x
2
+
1
Φ
21
(
x
)
=
x
12
−
x
11
+
x
9
−
x
8
+
x
6
−
x
4
+
x
3
−
x
+
1
Φ
22
(
x
)
=
x
10
−
x
9
+
x
8
−
x
7
+
x
6
−
x
5
+
x
4
−
x
3
+
x
2
−
x
+
1
Φ
23
(
x
)
=
x
22
+
x
21
+
x
20
+
x
19
+
x
18
+
x
17
+
x
16
+
x
15
+
x
14
+
x
13
+
x
12
+
x
11
+
x
10
+
x
9
+
x
8
+
x
7
+
x
6
+
x
5
+
x
4
+
x
3
+
x
2
+
x
+
1
Φ
24
(
x
)
=
x
8
−
x
4
+
1
Φ
25
(
x
)
=
x
20
+
x
15
+
x
10
+
x
5
+
1
Φ
26
(
x
)
=
x
12
−
x
11
+
x
10
−
x
9
+
x
8
−
x
7
+
x
6
−
x
5
+
x
4
−
x
3
+
x
2
−
x
+
1
Φ
27
(
x
)
=
x
18
+
x
9
+
1
Φ
28
(
x
)
=
x
12
−
x
10
+
x
8
−
x
6
+
x
4
−
x
2
+
1
Φ
29
(
x
)
=
x
28
+
x
27
+
x
26
+
x
25
+
x
24
+
x
23
+
x
22
+
x
21
+
x
20
+
x
19
+
x
18
+
x
17
+
x
16
+
x
15
+
x
14
+
x
13
+
x
12
+
x
11
+
x
10
+
x
9
+
x
8
+
x
7
+
x
6
+
x
5
+
x
4
+
x
3
+
x
2
+
x
+
1
Φ
30
(
x
)
=
x
8
+
x
7
−
x
5
−
x
4
−
x
3
+
x
+
1
\begin{array}{l} \Phi_{1}(x)=x-1\\ \Phi_{2}(x)=x+1\\ \Phi_{3}(x)=x^{2}+x+1\\ \Phi_{4}(x)=x^{2}+1\\ \Phi_{5}(x)=x^{4}+x^{3}+x^{2}+x+1\\ \Phi_{6}(x)=x^{2}-x+1\\ \Phi_{7}(x)=x^{6}+x^{5}+x^{4}+x^{3}+x^{2}+x+1\\ \Phi_{8}(x)=x^{4}+1\\ \Phi_{9}(x)=x^{6}+x^{3}+1\\ \Phi_{10}(x)=x^{4}-x^{3}+x^{2}-x+1\\ \Phi_{11}(x)=x^{10}+x^{9}+x^{8}+x^{7}+x^{6}+x^{5}+x^{4}+x^{3}+x^{2}+x+1\\ \Phi_{12}(x)=x^{4}-x^{2}+1\\ \Phi_{13}(x)=x^{12}+x^{11}+x^{10}+x^{9}+x^{8}+x^{7}+x^{6}+x^{5}+x^{4}+x^{3}+x^{2}+x+1\\ \Phi_{14}(x)=x^{6}-x^{5}+x^{4}-x^{3}+x^{2}-x+1\\ \Phi_{15}(x)=x^{8}-x^{7}+x^{5}-x^{4}+x^{3}-x+1\\ \Phi_{16}(x)=x^{8}+1\\ \Phi_{17}(x)=x^{16}+x^{15}+x^{14}+x^{13}+x^{12}+x^{11}+x^{10}+x^{9}+x^{8}+x^{7}+x^{6}+x^{5}+x^{4}+x^{3}+x^{2}+x+1\\ \Phi_{18}(x)=x^{6}-x^{3}+1\\ \Phi_{19}(x)=x^{18}+x^{17}+x^{16}+x^{15}+x^{14}+x^{13}+x^{12}+x^{11}+x^{10}+x^{9}+x^{8}+x^{7}+x^{6}+x^{5}+x^{4}+x^{3}+x^{2}+x+\\ \Phi_{20}(x)=x^{8}-x^{6}+x^{4}-x^{2}+1 \\ \Phi_{21}(x)=x^{12}-x^{11}+x^{9}-x^{8}+x^{6}-x^{4}+x^{3}-x+1 \\ \Phi_{22}(x)=x^{10}-x^{9}+x^{8}-x^{7}+x^{6}-x^{5}+x^{4}-x^{3}+x^{2}-x+1 \\ \Phi_{23}(x)=x^{22}+x^{21}+x^{20}+x^{19}+x^{18}+x^{17}+x^{16}+x^{15}+x^{14}+x^{13}+x^{12} \\ \quad+x^{11}+x^{10}+x^{9}+x^{8}+x^{7}+x^{6}+x^{5}+x^{4}+x^{3}+x^{2}+x+1 \\ \Phi_{24}(x)=x^{8}-x^{4}+1 \\ \Phi_{25}(x)=x^{20}+x^{15}+x^{10}+x^{5}+1 \\ \Phi_{26}(x)=x^{12}-x^{11}+x^{10}-x^{9}+x^{8}-x^{7}+x^{6}-x^{5}+x^{4}-x^{3}+x^{2}-x+1 \\ \Phi_{27}(x)=x^{18}+x^{9}+1 \\ \Phi_{28}(x)=x^{12}-x^{10}+x^{8}-x^{6}+x^{4}-x^{2}+1 \\ \Phi_{29}(x)=x^{28}+x^{27}+x^{26}+x^{25}+x^{24}+x^{23}+x^{22}+x^{21}+x^{20}+x^{19}+x^{18}+x^{17}+x^{16}+x^{15} \\ \quad+x^{14}+x^{13}+x^{12}+x^{11}+x^{10}+x^{9}+x^{8}+x^{7}+x^{6}+x^{5}+x^{4}+x^{3}+x^{2}+x+1 \\ \Phi_{30}(x)=x^{8}+x^{7}-x^{5}-x^{4}-x^{3}+x+1 \end{array}
Φ1(x)=x−1Φ2(x)=x+1Φ3(x)=x2+x+1Φ4(x)=x2+1Φ5(x)=x4+x3+x2+x+1Φ6(x)=x2−x+1Φ7(x)=x6+x5+x4+x3+x2+x+1Φ8(x)=x4+1Φ9(x)=x6+x3+1Φ10(x)=x4−x3+x2−x+1Φ11(x)=x10+x9+x8+x7+x6+x5+x4+x3+x2+x+1Φ12(x)=x4−x2+1Φ13(x)=x12+x11+x10+x9+x8+x7+x6+x5+x4+x3+x2+x+1Φ14(x)=x6−x5+x4−x3+x2−x+1Φ15(x)=x8−x7+x5−x4+x3−x+1Φ16(x)=x8+1Φ17(x)=x16+x15+x14+x13+x12+x11+x10+x9+x8+x7+x6+x5+x4+x3+x2+x+1Φ18(x)=x6−x3+1Φ19(x)=x18+x17+x16+x15+x14+x13+x12+x11+x10+x9+x8+x7+x6+x5+x4+x3+x2+x+Φ20(x)=x8−x6+x4−x2+1Φ21(x)=x12−x11+x9−x8+x6−x4+x3−x+1Φ22(x)=x10−x9+x8−x7+x6−x5+x4−x3+x2−x+1Φ23(x)=x22+x21+x20+x19+x18+x17+x16+x15+x14+x13+x12+x11+x10+x9+x8+x7+x6+x5+x4+x3+x2+x+1Φ24(x)=x8−x4+1Φ25(x)=x20+x15+x10+x5+1Φ26(x)=x12−x11+x10−x9+x8−x7+x6−x5+x4−x3+x2−x+1Φ27(x)=x18+x9+1Φ28(x)=x12−x10+x8−x6+x4−x2+1Φ29(x)=x28+x27+x26+x25+x24+x23+x22+x21+x20+x19+x18+x17+x16+x15+x14+x13+x12+x11+x10+x9+x8+x7+x6+x5+x4+x3+x2+x+1Φ30(x)=x8+x7−x5−x4−x3+x+1
在同态加密中,用到的最重要的一个性质是:
Φ
2
h
(
x
)
=
x
2
h
−
1
+
1
\Phi_{2^{h}}(x)=x^{2^{h-1}}+1
Φ2h(x)=x2h−1+1
所以对于一个
2
2
2的幂次
N
=
2
k
N=2^k
N=2k,所谓的第2N个分圆多项式就是指
ϕ
2
N
(
X
)
=
X
N
+
1
\phi_{2N}(X)=X^N+1
ϕ2N(X)=XN+1