分圆多项式 cyclotomic polynomial

翻译自维基百科

数学上将第 n n n个分圆多项式写作 Φ n ( X ) \Phi_n(X) Φn(X)

定义为:

对于任意正整数 n n n Φ n ( X ) \Phi_n(X) Φn(X)是一个不可约的首一多项式,满足 Φ n ( X ) ∣ x n − 1 \Phi_n(X)|x^n-1 Φn(X)xn1,任意 k < n k<n k<n, Φ n ( X ) ∤ x k − 1 \Phi_n(X) \nmid x^k-1 Φn(X)xk1。且这个多项式的根都是单位根 e 2 i π k n e^{2i \pi \frac{k}{n}} e2nk,所以这个多项式可以写为:
Φ n ( x ) = ∏ 1 ≤ k ≤ n gcd ⁡ ( k , n ) = 1 ( x − e 2 i π k n ) \Phi_{n}(x)=\prod_{1 \leq k \leq n \atop \operatorname{gcd}(k, n)=1}\left(x-e^{2 i \pi \frac{k}{n}}\right) Φn(x)=gcd(k,n)=11kn(xe2nk)

例子:
Φ 1 ( x ) = x − 1 Φ 2 ( x ) = x + 1 Φ 3 ( x ) = x 2 + x + 1 Φ 4 ( x ) = x 2 + 1 Φ 5 ( x ) = x 4 + x 3 + x 2 + x + 1 Φ 6 ( x ) = x 2 − x + 1 Φ 7 ( x ) = x 6 + x 5 + x 4 + x 3 + x 2 + x + 1 Φ 8 ( x ) = x 4 + 1 Φ 9 ( x ) = x 6 + x 3 + 1 Φ 10 ( x ) = x 4 − x 3 + x 2 − x + 1 Φ 11 ( x ) = x 10 + x 9 + x 8 + x 7 + x 6 + x 5 + x 4 + x 3 + x 2 + x + 1 Φ 12 ( x ) = x 4 − x 2 + 1 Φ 13 ( x ) = x 12 + x 11 + x 10 + x 9 + x 8 + x 7 + x 6 + x 5 + x 4 + x 3 + x 2 + x + 1 Φ 14 ( x ) = x 6 − x 5 + x 4 − x 3 + x 2 − x + 1 Φ 15 ( x ) = x 8 − x 7 + x 5 − x 4 + x 3 − x + 1 Φ 16 ( x ) = x 8 + 1 Φ 17 ( x ) = x 16 + x 15 + x 14 + x 13 + x 12 + x 11 + x 10 + x 9 + x 8 + x 7 + x 6 + x 5 + x 4 + x 3 + x 2 + x + 1 Φ 18 ( x ) = x 6 − x 3 + 1 Φ 19 ( x ) = x 18 + x 17 + x 16 + x 15 + x 14 + x 13 + x 12 + x 11 + x 10 + x 9 + x 8 + x 7 + x 6 + x 5 + x 4 + x 3 + x 2 + x + Φ 20 ( x ) = x 8 − x 6 + x 4 − x 2 + 1 Φ 21 ( x ) = x 12 − x 11 + x 9 − x 8 + x 6 − x 4 + x 3 − x + 1 Φ 22 ( x ) = x 10 − x 9 + x 8 − x 7 + x 6 − x 5 + x 4 − x 3 + x 2 − x + 1 Φ 23 ( x ) = x 22 + x 21 + x 20 + x 19 + x 18 + x 17 + x 16 + x 15 + x 14 + x 13 + x 12 + x 11 + x 10 + x 9 + x 8 + x 7 + x 6 + x 5 + x 4 + x 3 + x 2 + x + 1 Φ 24 ( x ) = x 8 − x 4 + 1 Φ 25 ( x ) = x 20 + x 15 + x 10 + x 5 + 1 Φ 26 ( x ) = x 12 − x 11 + x 10 − x 9 + x 8 − x 7 + x 6 − x 5 + x 4 − x 3 + x 2 − x + 1 Φ 27 ( x ) = x 18 + x 9 + 1 Φ 28 ( x ) = x 12 − x 10 + x 8 − x 6 + x 4 − x 2 + 1 Φ 29 ( x ) = x 28 + x 27 + x 26 + x 25 + x 24 + x 23 + x 22 + x 21 + x 20 + x 19 + x 18 + x 17 + x 16 + x 15 + x 14 + x 13 + x 12 + x 11 + x 10 + x 9 + x 8 + x 7 + x 6 + x 5 + x 4 + x 3 + x 2 + x + 1 Φ 30 ( x ) = x 8 + x 7 − x 5 − x 4 − x 3 + x + 1 \begin{array}{l} \Phi_{1}(x)=x-1\\ \Phi_{2}(x)=x+1\\ \Phi_{3}(x)=x^{2}+x+1\\ \Phi_{4}(x)=x^{2}+1\\ \Phi_{5}(x)=x^{4}+x^{3}+x^{2}+x+1\\ \Phi_{6}(x)=x^{2}-x+1\\ \Phi_{7}(x)=x^{6}+x^{5}+x^{4}+x^{3}+x^{2}+x+1\\ \Phi_{8}(x)=x^{4}+1\\ \Phi_{9}(x)=x^{6}+x^{3}+1\\ \Phi_{10}(x)=x^{4}-x^{3}+x^{2}-x+1\\ \Phi_{11}(x)=x^{10}+x^{9}+x^{8}+x^{7}+x^{6}+x^{5}+x^{4}+x^{3}+x^{2}+x+1\\ \Phi_{12}(x)=x^{4}-x^{2}+1\\ \Phi_{13}(x)=x^{12}+x^{11}+x^{10}+x^{9}+x^{8}+x^{7}+x^{6}+x^{5}+x^{4}+x^{3}+x^{2}+x+1\\ \Phi_{14}(x)=x^{6}-x^{5}+x^{4}-x^{3}+x^{2}-x+1\\ \Phi_{15}(x)=x^{8}-x^{7}+x^{5}-x^{4}+x^{3}-x+1\\ \Phi_{16}(x)=x^{8}+1\\ \Phi_{17}(x)=x^{16}+x^{15}+x^{14}+x^{13}+x^{12}+x^{11}+x^{10}+x^{9}+x^{8}+x^{7}+x^{6}+x^{5}+x^{4}+x^{3}+x^{2}+x+1\\ \Phi_{18}(x)=x^{6}-x^{3}+1\\ \Phi_{19}(x)=x^{18}+x^{17}+x^{16}+x^{15}+x^{14}+x^{13}+x^{12}+x^{11}+x^{10}+x^{9}+x^{8}+x^{7}+x^{6}+x^{5}+x^{4}+x^{3}+x^{2}+x+\\ \Phi_{20}(x)=x^{8}-x^{6}+x^{4}-x^{2}+1 \\ \Phi_{21}(x)=x^{12}-x^{11}+x^{9}-x^{8}+x^{6}-x^{4}+x^{3}-x+1 \\ \Phi_{22}(x)=x^{10}-x^{9}+x^{8}-x^{7}+x^{6}-x^{5}+x^{4}-x^{3}+x^{2}-x+1 \\ \Phi_{23}(x)=x^{22}+x^{21}+x^{20}+x^{19}+x^{18}+x^{17}+x^{16}+x^{15}+x^{14}+x^{13}+x^{12} \\ \quad+x^{11}+x^{10}+x^{9}+x^{8}+x^{7}+x^{6}+x^{5}+x^{4}+x^{3}+x^{2}+x+1 \\ \Phi_{24}(x)=x^{8}-x^{4}+1 \\ \Phi_{25}(x)=x^{20}+x^{15}+x^{10}+x^{5}+1 \\ \Phi_{26}(x)=x^{12}-x^{11}+x^{10}-x^{9}+x^{8}-x^{7}+x^{6}-x^{5}+x^{4}-x^{3}+x^{2}-x+1 \\ \Phi_{27}(x)=x^{18}+x^{9}+1 \\ \Phi_{28}(x)=x^{12}-x^{10}+x^{8}-x^{6}+x^{4}-x^{2}+1 \\ \Phi_{29}(x)=x^{28}+x^{27}+x^{26}+x^{25}+x^{24}+x^{23}+x^{22}+x^{21}+x^{20}+x^{19}+x^{18}+x^{17}+x^{16}+x^{15} \\ \quad+x^{14}+x^{13}+x^{12}+x^{11}+x^{10}+x^{9}+x^{8}+x^{7}+x^{6}+x^{5}+x^{4}+x^{3}+x^{2}+x+1 \\ \Phi_{30}(x)=x^{8}+x^{7}-x^{5}-x^{4}-x^{3}+x+1 \end{array} Φ1(x)=x1Φ2(x)=x+1Φ3(x)=x2+x+1Φ4(x)=x2+1Φ5(x)=x4+x3+x2+x+1Φ6(x)=x2x+1Φ7(x)=x6+x5+x4+x3+x2+x+1Φ8(x)=x4+1Φ9(x)=x6+x3+1Φ10(x)=x4x3+x2x+1Φ11(x)=x10+x9+x8+x7+x6+x5+x4+x3+x2+x+1Φ12(x)=x4x2+1Φ13(x)=x12+x11+x10+x9+x8+x7+x6+x5+x4+x3+x2+x+1Φ14(x)=x6x5+x4x3+x2x+1Φ15(x)=x8x7+x5x4+x3x+1Φ16(x)=x8+1Φ17(x)=x16+x15+x14+x13+x12+x11+x10+x9+x8+x7+x6+x5+x4+x3+x2+x+1Φ18(x)=x6x3+1Φ19(x)=x18+x17+x16+x15+x14+x13+x12+x11+x10+x9+x8+x7+x6+x5+x4+x3+x2+x+Φ20(x)=x8x6+x4x2+1Φ21(x)=x12x11+x9x8+x6x4+x3x+1Φ22(x)=x10x9+x8x7+x6x5+x4x3+x2x+1Φ23(x)=x22+x21+x20+x19+x18+x17+x16+x15+x14+x13+x12+x11+x10+x9+x8+x7+x6+x5+x4+x3+x2+x+1Φ24(x)=x8x4+1Φ25(x)=x20+x15+x10+x5+1Φ26(x)=x12x11+x10x9+x8x7+x6x5+x4x3+x2x+1Φ27(x)=x18+x9+1Φ28(x)=x12x10+x8x6+x4x2+1Φ29(x)=x28+x27+x26+x25+x24+x23+x22+x21+x20+x19+x18+x17+x16+x15+x14+x13+x12+x11+x10+x9+x8+x7+x6+x5+x4+x3+x2+x+1Φ30(x)=x8+x7x5x4x3+x+1

在同态加密中,用到的最重要的一个性质是:
Φ 2 h ( x ) = x 2 h − 1 + 1 \Phi_{2^{h}}(x)=x^{2^{h-1}}+1 Φ2h(x)=x2h1+1
所以对于一个 2 2 2的幂次 N = 2 k N=2^k N=2k,所谓的第2N个分圆多项式就是指
ϕ 2 N ( X ) = X N + 1 \phi_{2N}(X)=X^N+1 ϕ2N(X)=XN+1

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值