淘宝广告投放效果分析

通过对淘宝广告展示数据的分析,研究广告投放的用户特征、时间、位置等多维度因素,以提高用户点击率和广告效果。数据来源包括用户日志、广告信息和用户行为数据。发现渠道430539_1007、16-19时、21-22时和0-2时的广告投放效果较好,男性、中档消费、浅层购物深度的用户点击意愿强。同时,收藏转化率为1.47%,购物车和购买转化率较低,建议优化着落页以提升转化率。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

一、分析目的:

在大数据时代的背景下,广告主可从购买媒介变成直接购买用户。广告的精准投放对广告主、服务平台与潜在用户而言,在提升效率与商业效益方面,有了更迫切的需求。然而网络广告形式多样,很多广告投放系统率相对缺乏针对性,使得网络广告精确度不够高。因此,对推广数据的研究是十分必要的。所以本次项目将从用户特征,投放时间,投放位置以及高点击率广告的特征等方面多维度进行数据分析,以提高用户点击率,实现淘宝展示广告精准投放,提升广告投放效果。

二、数据来源:

https://tianchi.aliyun.com/dataset/dataDetail?dataId=56

原始样本骨架raw_sample

从淘宝网站中随机抽样了114万用户8天内的广告展示/点击日志(2600万条记录),构成原始的样本骨架。

字段说明如下:

(1) user_id:脱敏过的用户ID;

(2) adgroup_id:脱敏过的广告单元ID;

(3) time_stamp:时间戳;

(4) pid:资源位;

(5) noclk:为1代表没有点击;为0代表点击;

(6) clk:为0代表没有点击;为1代表点击;

广告基本信息表ad_feature

本数据集涵盖了raw_sample中全部广告的基本信息。字段说明如下:

(1) adgroup_id:脱敏过的广告ID;

(2) cate_id:脱敏过的商品类目ID;

(3) campaign_id:脱敏过的广告计划ID;

(4) customer_id:脱敏过的广告主ID;

(5) brand:脱敏过的品牌ID;

(6) price: 宝贝的价格

用户基本信息表user_profile

本数据集涵盖了raw_sample中全部用户的基本信息。字段说明如下:

(1) userid:脱敏过的用户ID;

(2) cms_segid:微群ID;

(3) cms_group_id:cms_group_

### 淘宝平台上广告投放效果数据分析 #### 1. 数据收集与预处理 为了有效评估淘宝平台上的广告投放效果,首先需要确保数据的质量和完整性。对于原始样本表`raw_sample`中的时间戳字段`time_stamp`进行了日期和小时级别的拆分操作[^5]: ```sql alter table raw_sample add time_date varchar(20); alter table raw_sample add time_hour varchar(20); update raw_sample set time_date = left(from_unixtime(time_stamp),10); update raw_sample set time_hour = right(from_unixtime(time_stamp),8); ``` 这些新增的时间维度有助于更细致地理解不同时间段内广告的表现。 #### 2. 关键性能指标(KPIs) 在衡量广告投放效果时,应关注以下几个核心KPI: - **点击量(Click-through Rate, CTR)**: 表示有多少用户看到了广告并进一步点击查看详情的比例。 ```sql select age_level as '年龄层次', sum(clk) as '点击量', sum(clk)/(select COUNT(*) from raw_sample) as '点击率' from raw_sample, user_profile where raw_sample.user_id=user_profile.userid group by age_level; ``` - **转化路径分析**: 使用AARRR模型来跟踪用户从初次接触到完成购买的行为轨迹,特别是关注浏览、收藏、加入购物车直至最终下单的关键节点转换效率[^3]。 - **人群画像构建**: 基于用户的年龄层等特征进行分类统计,了解哪些特定群体对广告更为敏感[^4]。 #### 3. 分析工具和技术栈 针对上述提到的各项指标计算需求,可以采用SQL查询语句直接作用于数据库层面获取所需统计数据;而对于更加复杂的模式挖掘,则可能需要用到Python编程语言配合Pandas库来进行高级运算以及可视化展示工作成果。 此外,在实际项目实施过程中还会涉及到ETL流程设计(Extract Transform Load)、BI报表开发等多个方面的工作内容,因此像Tableau这样的商业智能软件也会成为不可或缺的一部分辅助决策支持系统建设。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值