淘宝广告投放效果分析

通过对淘宝广告展示数据的分析,研究广告投放的用户特征、时间、位置等多维度因素,以提高用户点击率和广告效果。数据来源包括用户日志、广告信息和用户行为数据。发现渠道430539_1007、16-19时、21-22时和0-2时的广告投放效果较好,男性、中档消费、浅层购物深度的用户点击意愿强。同时,收藏转化率为1.47%,购物车和购买转化率较低,建议优化着落页以提升转化率。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

一、分析目的:

在大数据时代的背景下,广告主可从购买媒介变成直接购买用户。广告的精准投放对广告主、服务平台与潜在用户而言,在提升效率与商业效益方面,有了更迫切的需求。然而网络广告形式多样,很多广告投放系统率相对缺乏针对性,使得网络广告精确度不够高。因此,对推广数据的研究是十分必要的。所以本次项目将从用户特征,投放时间,投放位置以及高点击率广告的特征等方面多维度进行数据分析,以提高用户点击率,实现淘宝展示广告精准投放,提升广告投放效果。

二、数据来源:

https://tianchi.aliyun.com/dataset/dataDetail?dataId=56

原始样本骨架raw_sample

从淘宝网站中随机抽样了114万用户8天内的广告展示/点击日志(2600万条记录),构成原始的样本骨架。

字段说明如下:

(1) user_id:脱敏过的用户ID;

(2) adgroup_id:脱敏过的广告单元ID;

(3) time_stamp:时间戳;

(4) pid:资源位;

(5) noclk:为1代表没有点击;为0代表点击;

(6) clk:为0代表没有点击;为1代表点击;

广告基本信息表ad_feature

本数据集涵盖了raw_sample中全部广告的基本信息。字段说明如下:

(1) adgroup_id:脱敏过的广告ID;

(2) cate_id:脱敏过的商品类目ID;

(3) campaign_id:脱敏过的广告计划ID;

(4) customer_id:脱敏过的广告主ID;

(5) brand:脱敏过的品牌ID;

(6) price: 宝贝的价格

用户基本信息表user_profile

本数据集涵盖了raw_sample中全部用户的基本信息。字段说明如下:

(1) userid:脱敏过的用户ID;

(2) cms_segid:微群ID;

(3) cms_group_id:cms_group_

数据分析案例之淘宝⽤户⾏为分析完整报告 ⼀、项⽬背景 ⼀、项⽬背景 UserBehavior为淘宝⽤户⾏为的数据集,数据集包括了2017年11⽉25⽇⾄2017年12⽉3⽇之间,有⼤约82万随机⽤户的⽤户⾏ 为(⾏为包括点击pv,购买buy,加购物车chart,收藏fav)数据。 ⼆、项⽬⽬标 ⼆、项⽬⽬标 通过对⽤户⾏为的分析,主要实现下⾯两个⽬的: 1、为客户提供更精准的隐式反馈,帮助⽤户更快速找到商品; 2、为提⾼公司的交叉销售能⼒,提⾼转化率,销售额,提升公司业绩。 三、分析思路 三、分析思路 主要从以下四个维度对⽤户⾏为进⾏分析和建议: 1、⽤户⾏为间的转化情况分析:利⽤漏⽃模型分析⽤户从商品浏览到购买整个过程中,常见的电商分析指标,确定各个环节流失率, 提出改善转化率的建议。 2、⽤户的⾏为习惯分析:利⽤pv、uv等指标,找出⽤户活跃的⽇期以及每天的活跃时间段。 3、⽤户类⽬偏好分析:根据商品的点击、收藏、加购、购买频率,探索⽤户对商品的购买偏好,找到针对不同商品的营销策略(购买 率较⾼的类⽬和产品,优化产品推荐)。 4、⽤户价值分析:找出最具有价值的核⼼⽤户群,针对这个群体推送个性化推送,优惠券或者活动。 逻辑如下: 四、数据处理 四、数据处理 主要使⽤⼯具:Navicat for MySQL,MySQL, power BI。 (⼀)准备数据 (⼀)准备数据 1、数据来源 、数据来源 阿⾥云天池: 2、将数据导⼊ 、将数据导⼊MySQL 使⽤Navicat导⼊功能,导⼊后结果如下图,这⾥会出错卡在导⼊步骤的5/8位置。 使⽤代码直接导⼊,结果如下图,未出现上述卡住现象。 3、数据理解 、数据理解 本数据主要包含了⼤概82万条数据,每⼀⾏分别表⽰⼀个⽤的⾏为,由⽤户ID(User_ID)、产品ID(Item_ID)、类⽬ ID(Category_ID)、⾏为类型(Behavior_type)、时间戳(Timestamp),⾏为类型⼜分为点击(pv)、收藏(fav)、加购物车 (chart)、购买(buy)。 (⼆)数据清洗 (⼆)数据清洗 1、 、Timestamp⼀致化处理 ⼀致化处理 Timestamp列,⽆法直接分析,需要将其划分为三列,分别为时间,⽇期,⼩时。 --添加新列,根据Date_time返回⽇期时间 --添加新列,根据Date返回⽇期时间 --添加新列,根据Time返回⼩时 2、挑出⽬标数据集 、挑出⽬标数据集 由于项⽬背景是需要对2017年11⽉25⽇⾄2017年12⽉3⽇之间⽤户⾏为数据集进⾏隐式反馈推荐问题的研究,所以需要对不在这 个时间内的数据进⾏删除。 --先检查是否有在2017-11-01和2017-11-20之间的时间值。 --删除掉这段时间以外的⾏ 3、删除重复值 、删除重复值 使⽤SQL语句发现,有出现重复字段。 全字段重复有两⾏,下⾯去重⽅法并不对全字段的奏效,我采⽤的是直接删除,删除数据仅4⾏针对现有的380万⾏数据影响较⼩。 4、缺失值处理 、缺失值处理 对所有列进⾏了计数查询后,发现'Timestamp'字段有null值,然后我们删除空值所在的列。 数据清洗完毕。 导⼊数据集⼤⼩预览: (三)数据分析 (三)数据分析 结果均为先使⽤sql分析数据,获得分析结果,然后将分析结果导出到excel或者power BI中进⾏可视化。 1、数据整体情况概述 、数据整体情况概述 a、总体uv、pv、⼈均浏览次数、成交量 b、⽇均uv、pv、⼈均浏览次数、成交量 使⽤power BI处理数据后将其导出后分析对应的每个指标与时间之间的关系。 c.⽤户整体⾏为数据 d、⽤户的复购率和跳失率 2017年11⽉25⽇⾄2017年12⽉3⽇之间,⽤户的复购率为66.4%且流失率为0,说明淘宝对⽤户有较⼤的吸引⼒使⽤户停留且⽤户 的忠诚度⾮常⾼。可以进⼀步提⾼复购率,⿎励⽤户更⾼频次的购物。 2、⽤户转化情况分析 、⽤户转化情况分析 a、⽤户转化率及流失分析 上图统计了各个⾏为的总数量,点击后,到加购物车或者收藏概率在3%-6%之间,⽽最后真正购买的概率降到了2.4%,说明⽤户的⾏ 为在浏览了商品详情页后出现了⼤量的流失。但是⽤户是否也是在点击后产⽣了⼤量的流失呢? 对此,对各个⽤户⾏为类型的⽤户数进⾏了统计,并使⽤漏⽃转化模型进⾏了处理,建⽴了⽤户转化漏⽃图。 上图可以看出,⽤户并未点击后就⼤量流失,并且最后付费⽤户⽐例达到了69%,购买率达到了7成,说明⽤户的购买意愿较为理想。 结合⽤户⾏为数统计推断⽤户的点击⾏为远远超过了收藏和加购物车的⾏为,说明⽤户有较⼤的可能在购物时有"货⽐三家"的习惯。 所以针对⼤部分点击后转化到加购物车和收藏的概率较低有较⼤的提升空间,APP可以通过优化推荐商品的功
### 淘宝平台上广告投放效果数据分析 #### 1. 数据收集与预处理 为了有效评估淘宝平台上的广告投放效果,首先需要确保数据的质量和完整性。对于原始样本表`raw_sample`中的时间戳字段`time_stamp`进行了日期和小时级别的拆分操作[^5]: ```sql alter table raw_sample add time_date varchar(20); alter table raw_sample add time_hour varchar(20); update raw_sample set time_date = left(from_unixtime(time_stamp),10); update raw_sample set time_hour = right(from_unixtime(time_stamp),8); ``` 这些新增的时间维度有助于更细致地理解不同时间段内广告的表现。 #### 2. 关键性能指标(KPIs) 在衡量广告投放效果时,应关注以下几个核心KPI: - **点击量(Click-through Rate, CTR)**: 表示有多少用户看到了广告并进一步点击查看详情的比例。 ```sql select age_level as '年龄层次', sum(clk) as '点击量', sum(clk)/(select COUNT(*) from raw_sample) as '点击率' from raw_sample, user_profile where raw_sample.user_id=user_profile.userid group by age_level; ``` - **转化路径分析**: 使用AARRR模型来跟踪用户从初次接触到完成购买的行为轨迹,特别是关注浏览、收藏、加入购物车直至最终下单的关键节点转换效率[^3]。 - **人群画像构建**: 基于用户的年龄层等特征进行分类统计,了解哪些特定群体对广告更为敏感[^4]。 #### 3. 分析工具和技术栈 针对上述提到的各项指标计算需求,可以采用SQL查询语句直接作用于数据库层面获取所需统计数据;而对于更加复杂的模式挖掘,则可能需要用到Python编程语言配合Pandas库来进行高级运算以及可视化展示工作成果。 此外,在实际项目实施过程中还会涉及到ETL流程设计(Extract Transform Load)、BI报表开发等多个方面的工作内容,因此像Tableau这样的商业智能软件也会成为不可或缺的一部分辅助决策支持系统建设。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值