本地化MLX Pipeline:在本地运行和集成MLX模型的实用指南

本地化MLX Pipeline:在本地运行和集成MLX模型的实用指南

引言

随着机器学习模型的普及,能够在本地环境中方便地运行这些模型显得尤为重要。MLX提供了在本地运行由社区创建的模型的能力,并且可以通过MLXPipeline类来实现这一点。本篇文章将带领你了解如何在本地环境中使用MLX Pipeline,以及如何通过LangChain集成和调用这些模型。

主要内容

1. 安装必要的包

在开始之前,请确保已安装以下Python包:

%pip install --upgrade --quiet mlx-lm transformers huggingface_hub

2. 加载模型

你可以通过from_model_id方法,以模型ID来加载模型:

from langchain_community.llms.mlx_pipeline import MLXPipeline

pipe = MLXPipeline.from_model_id(
    "mlx-community/quantized-gemma-2b-it",
    pipeline_kwargs={
   "max_tokens": 10
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值