本地化MLX Pipeline:在本地运行和集成MLX模型的实用指南
引言
随着机器学习模型的普及,能够在本地环境中方便地运行这些模型显得尤为重要。MLX提供了在本地运行由社区创建的模型的能力,并且可以通过MLXPipeline类来实现这一点。本篇文章将带领你了解如何在本地环境中使用MLX Pipeline,以及如何通过LangChain集成和调用这些模型。
主要内容
1. 安装必要的包
在开始之前,请确保已安装以下Python包:
%pip install --upgrade --quiet mlx-lm transformers huggingface_hub
2. 加载模型
你可以通过from_model_id
方法,以模型ID来加载模型:
from langchain_community.llms.mlx_pipeline import MLXPipeline
pipe = MLXPipeline.from_model_id(
"mlx-community/quantized-gemma-2b-it",
pipeline_kwargs={
"max_tokens": 10