扩散模型中,Flow Matching的训练方式相比于 DDPM 训练方法有何优势?

在这里插入图片描述

在扩散模型中,Flow Matching(FM)相比DDPM(Denoising Diffusion Probabilistic Models)的训练方法具有以下核心优势:


1. 更简单的训练目标

  • DDPM:通过逐步预测噪声来间接优化数据分布的变分下界(ELBO),需要设计多步的噪声调度策略,训练目标依赖马尔可夫链的分解。
  • Flow Matching:直接匹配从数据分布到先验分布的概率路径的向量场(如条件流匹配),目标函数更简洁(如回归速度场),无需马尔可夫链假设或噪声预测的中间步骤。

2. 灵活的生成过程与高效采样

  • DDPM:依赖离散的扩散步骤,生成需要数百至数千步迭代,即使通过改进(如DDIM)加速,仍受限于步数。
### Flow MatchingDDPM 的概念 在机器学习领域,Flow Matching 和 Denoising Diffusion Probabilistic Models (DDPM) 是两种不同的生成模型方法。 #### Flow Matching Flow Matching 属于一类基于流的方法,旨在通过一系列可逆变换将简单的先验分布转换为目标数据分布。这种方法的核心在于设计一组参数化的映射 \( f_\theta \),使得输入噪声经过这些映射后能够逼近真实的数据分布[^1]。 ```python import torch.nn as nn class SimpleFlow(nn.Module): def __init__(self, dim): super(SimpleFlow, self).__init__() # 定义可逆层结构 pass def forward(self, z): # 正向传播计算 return x, log_det_jacobian def inverse(self, x): # 反向传播计算 return z, log_det_jacobian ``` #### DDPM (Denoising Diffusion Probabilistic Models) DDPM 则采用了一种逐步加噪再逐渐去噪的过程来建模复杂的数据分布。具体来说,在训练阶段会按照预定的时间步长 t 对样本施加高斯噪音;而在推理过程中,则是从纯随机噪声出发,反向执行多个时间步骤下的条件预测,最终恢复出清晰的图像或其他形式的数据[^2]。 ```python def q_sample(x_start, t, noise=None): if noise is None: noise = torch.randn_like(x_start) sqrt_alphas_cumprod_t = extract(sqrt_alphas_cumprod, t, x_start.shape) sqrt_one_minus_alphas_cumprod_t = extract( sqrt_one_minus_alphas_cumprod, t, x_start.shape ) return ( sqrt_alphas_cumprod_t * x_start + sqrt_one_minus_alphas_cumprod_t * noise ) @torch.no_grad() def p_sample_loop(model, shape): device = next(model.parameters()).device b = shape[0] img = torch.randn(shape, device=device) imgs = [] for i in tqdm(reversed(range(timesteps)), desc='sampling loop time step', total=timesteps): img = p_sample(model, img, torch.full((b,), i, device=device, dtype=torch.long)) imgs.append(img.cpu().numpy()) return imgs ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

小米玄戒Andrew

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值