神经网络输入图片大小,神经网络提取图片特征

本文探讨了神经网络,特别是BP网络在处理图像时的输入输出格式,强调深度学习通常使用矢量图。内容涉及如何将图片像素作为输入,选择适合处理图像的神经网络类型,以及BP网络在图像识别中的应用。文章还讨论了卷积神经网络在形状识别、人脸检测和文字识别等领域的应用,并解释了图像大小在卷积神经网络中的处理灵活性。
摘要由CSDN通过智能技术生成

BP神经网络输入输出格式问题

在你的代码基础上说了。clc;clear;closeall;p=load('');%你问题最后说的数据文件名跟这个不同。

p1=p';t=[1];%这个输出(Targets)应该和输入数据对应,输入数据有10个,输出应该也是10个所以改为t是一个1x10的行向量。

深度学习作为输入的图像一般是矢量图吗

深度学习作为输入的图像一般为矢量图AI爱发猫 www.aifamao.com。在电脑中,图像有两种表达方式,一种叫做位图,另一种叫做矢量图。位图是把一幅彩色图像分成许许多多像素,用若干位数字来指定每个像素的颜色、亮度等属性。

因此一幅位图就由许许多多描述每个像素的数据构成,这种表示方法很直观,而且能够很精细地描述图像。位图一般可以通过扫描仪、数码相机等设备获得。影响位图大小的因素是图像的分辨率和颜色数。

矢量图是由一系列电脑指令来表示一幅图,比如画点、画线的指令等,用数学表达式来表示一幅图。在显示图像时,电脑是一边计算一边显示的。矢量图文件的大小取决于完成图像绘制工作所需的指令条数。

矢量图容易做到对图像的移动、缩放和旋转等等。相同的或者类似的图像可以当作构成复杂图像的构件,把它们存放在图库中,以缩短绘图时间,减少矢量图文件的大小。

对于一幅很复杂的彩色照片,则很难用数学表达式来表达,这时往往用位图来表示。一般位图文件比矢量图的文件要大。

位图是由像素组成的,在放大位图的时候,如果没有特殊的处理,位图会变得很粗糙,原因是图像的尺寸变大了,而像素的数量却没有改变。

矢量图在放大时,不会出现这种失真,因为矢量图中存放的是绘制图像的信息,不会因为图像大小的改变而改变。希望我能帮助你解疑释惑。

当输入输出均为图片时用什么样的神经网络比较合适

如何通过人工神经网络实现图像识别

人工神经网络(ArtificialNeuralNetworks)(简称ANN)系统从20世纪40年代末诞生至今仅短短半个多世纪,但由于他具有信息的分布存储、并行处理以及自学习能力等优点,已经在信息处理、模式识别、智能控制及系统建模等领域得到越来越广泛的应用。

尤其是基于误差反向传播(ErrorBackPropagation)算法的多层前馈网络(Multiple-LayerFeedforwardNetwork)(简称BP网络),可以以任意精度逼近任意的连续函数,所以广泛应用于非线性建模、函数逼近、模式分类等方

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值