【python实现】#搭建一个可以运行在不同优化器模式下的 3 层神经网络模型(网络层节点 数 目分别为:5,2,1),对“月亮”数据集进行分类。

该博客介绍如何使用Python搭建一个3层神经网络模型,针对月亮数据集进行分类。分别在无优化器、动量梯度下降和Adam优化器下进行实验,通过可视化展示分类结果并比较不同算法的分类准确度和平滑度。实验表明,动量梯度下降在本场景下表现最佳,而Adam在训练初期有较快收敛速度。
摘要由CSDN通过智能技术生成

一、题目

搭建一个可以运行在不同优化器模式下的 3 层神经网络模型(网络层节点
数 目分别为:5,2,1),对“月亮”数据集进行分类。

  1. 在不使用优化器的情况下对数据集分类,并可视化表示。
  2. 将优化器设置为具有动量的梯度下降算法,可视化表示分类结果。
  3. 将优化器设置为 Adam 算法,可视化分类结果。
  4. 总结不同算法的分类准确度以及代价曲线的平滑度。

二、解题说明

3 层神经网络模型,即含有两个隐藏层,根据题目要求可知,第一个隐藏层
的节点数为 5,第二个隐藏层的节点个数为 2,输出节点个数为 1,可知输入层节
点个数为 2。结构如下:
在这里插入图片描述

2.1 在不使用优化器的情况下对数据集分类,并可视化表示

首先搭建基础三层神经网络, 依次定义加载数据集、 神经网络结构、 初始化
模型的参数、 激活函数、前向传播、损失函数、反向传播、更新梯度,然后定义
神经网络模型,将运行逻辑整合在一起&#x

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

小镇躺不平家

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值