tf.Variable()
创建tf变量:
weights = tf.Variable(tf.random_normal([88, 88], stddev=0.1),name="weights")
biases = tf.Variable(tf.zeros([88]), name="biases")
tf. get_variable()
创建tf变量:
weights=get_variable(name='weights', shape=[88,88],
initializer=tf.random_normal_initializer(mean=0, stddev=1))
biases = tf.get_variable(name='biases ', shape=[1], initializer=tf.constant_initializer(1))
为什么发明这个用法?
TensorFlow里创建变量的两种方式有 tf.get_variable() 和 tf.Variable(),如果使用Variable 的话每次都会新建变量,但是大多数时候我们是希望一些变量重用的,所以就用到了get_variable()。它会去搜索变量名,然后没有就新建,有就直接用。
特点:
tf.get_variable()创建的变量名不受 name_scope 的影响,而且在未指定共享变量时,如果重名会报错,即不同的变量之间不能有相同的名字,除非你定义了variable_scope,这样才可以有相同的名字。
然而,tf.Variable()会自动检测有没有变量重名,如果有则会自行处理。
tf.name_scope(‘scope_name’)
为什么发明这个用法?
典型的 TensorFlow 可以有数以千计的节点,如此多而难以一下全部看到,甚至无法使用标准图表工具来展示。为简单起见,我们为op/tensor名划定范围,并且可视化把该信息用于在图表中的节点上定义一个层级。默认情况下, 只有顶层节点会显示。
例子:
with tf.name_scope('hidden') as scope:
a = tf.constant(5, name='alpha')
W = tf.Variable(tf.random_uniform([1, 2], -1.0, 1.0), name='weights')
b = tf.Variable(tf.zeros([1]), name='biases')
print a.name
print W.name
print b.name
输出结果:
hidden/alpha
hidden/weights
hidden/biases
注意:name_scope对 get_variable()创建的变量 的名字不会有任何影响。
tf.variable_scope(‘scope_name’)
为什么发明这个用法?
主要是因为变量共享的需求。
一般怎么用?
tf.variable_scope() 主要结合 tf.get_variable() 来使用,实现 变量共享。
例子:
# 这里是正确的打开方式~~~可以看出,name 参数才是对象的唯一标识
import tensorflow as tf
with tf.variable_scope('v_scope') as scope1:
Weights1 = tf.get_variable('Weights', shape=[2,3])
bias1 = tf.get_variable('bias', shape=[3])
# 下面来共享上面已经定义好的变量
# note: 在下面的 scope 中的变量必须已经定义过了,才能设置 reuse=True,否则会报错
with tf.variable_scope('v_scope', reuse=True) as scope2:
Weights2 = tf.get_variable('Weights')
print Weights1.name
print Weights2.name
# 可以看到这两个引用名称指向的是同一个内存对象
v_scope/Weights:0
v_scope/Weights:0