大涡模拟实战:从WRF到PALM的完整数值模拟工作流

随着低空经济的蓬勃发展,无人机、空中出租车等新型交通工具正在重塑我们的城市空间。这场静默的革命不仅带来了经济机遇,更对城市大气环境提出了全新挑战。在距离地面200米以下的城市冠层中,建筑物与大气的复杂相互作用、人类活动产生的热量和污染物,都在塑造着独特的城市微气候。理解和预测这个复杂系统的行为,对于保障低空交通安全、改善城市人居环境具有重要意义。城市气候学正经历着前所未有的发展机遇。从传统的城市热岛效应研究,到新兴的城市边界层动力学探索,科学家们需要更精细的工具来描述城市大气运动的复杂性。大涡模拟(LES)作为一种先进的数值模拟方法,能够精确捕捉建筑物尾流、热羽流等城市特有的湍流结构,为我们打开了认识城市大气环境的新窗口。然而,掌握大涡模拟技术绝非易事。从WRF-LES到PALM,每一个模式都像一把精密的手术刀,需要操作者深入理解其工作原理,熟练掌握其使用方法。

专题一、基础理论

1、大涡模拟基本原理

1)控制方程和湍流闭合

2)滤波方法与子网格模式

3)边界条件处理方法

专题二、主要模型概述

1、WRF模型概述

1)模型的发展历程

2)模型的基本框架

2、PALM模型概述

1)模型的基本框架

2)模型架构与计算网格

3)动力学核心

4)湍流模块

专题三、Python基础

1、NumPy:用于数值计算和数组操作

2、Pandas:用于数据处理和分析

3、xarray:处理带标签的多维数组数据

4、用于:前处理、后处理及可视化

专题四、Linux基础

1、Linux文件系统结构

1)文件类型

2)文件查看命令

3)文件操作命令

4)文件权限管理

5)文件查找

6)文件压缩和解压

7)磁盘空间管理

2、环境变量设置

1)环境变量基础概念

2)常见的环境变量

3)查看环境变量

4)设置环境变量的方法

5)临时设置、永久设置

6)编辑用户的配置文件

专题五、编译

1、基础编译过程

1)单文件编译

2)多文件编译

3)使用Make工具

4)使用CMake构建系统

5)优化选项

6)常见问题解决

专题六、环境部署

1、预编译

2、WRF编译

3、PALM编译

4、环境配置

图片

专题七、WRF模拟

1、WPS处理

1)namelist.wps配置

2)通过 geogrid 程序定义模拟区域并插值地形、土地利用等静态数据

3)使用 ungrib 程序解码气象数据,如 GRIB 格式的初始场和边界场

4)运行 metgrid 程序将所有数据插值到模式网格上

2、WRF处理

1)namelist.input配置

2)WRF 模型包含多种物理过程方案的选择:

专题八、ndown模拟

1、ndown模拟

1)namelist.wps配置

2)namelist.input配置

3)ndown执行

专题九、WRF-LES模拟

1、模型配置

1)模拟域设置

2)网格配置

2、物理参数化

1)次网格尺度湍流模式

3、数值方法

1)时间积分

4、初始和边界条件

1)初始化选项

2)边界处理

图片

专题十、QGIS操作

1、数据读入

1)矢量数据读入

2)栅格数据读入

2、数据裁剪

1)矢量数据裁剪

2)栅格数据裁剪

3、坐标转换

1)矢量数据投影转换

2)栅格数据投影转换

4、矢量数据修复

1)几何修复

2)拓扑检查与修复

5、矢量字段编辑

1)字段计算

2)字段管理

3)字段计算器

图片

专题十一、PALM模拟

1、主要模块介绍

2、配置文件(p3d)

3、自带简单案例模拟

专题十二、PALM驱动数据制作(WRF4PALM)

1、WRF4PALM基础

1)配置文件介绍

2)执行步骤

图片

专题十三、PALM静态数据制作(palmpy)

1、PALMPY

1)地形数据(SRTM、GDEM)

2)土地利用数据(清华2017年、ESA)

3)配置文件

4)执行步骤

图片

专题十四、城市案例研究

1、真实案例模拟

1)不考虑建筑模拟

2)考虑建筑模拟

图片

PALMPY多城市预处理文件

图片

动物目标检测数据集 一、基础信息 数据集名称:动物目标检测数据集 图片数量: - 训练集:9,134张图片 - 验证集:1,529张图片 - 测试集:1,519张图片 总计:12,182张图片 分类类别: Bear(熊)、Cat(猫)、Cattle(牛)、Chicken(鸡)、Deer(鹿)、Dog(狗)、Elephant(象)、Horse(马)、Monkey(猴子)、Sheep(绵羊) 标注格式: YOLO格式,包含归一化坐标的边界框和数字编码类别标签,支持目标检测模型开发。 数据特性: 涵盖俯拍视角、地面视角等多角度动物影像,适用于复杂环境下的动物识别需求。 二、适用场景 农业智能监测: 支持畜牧管理系统开发,自动识别牲畜种类并统计数量,提升养殖场管理效率。 野生动物保护: 应用于自然保护区监控系统,实时检测特定动物物种,辅助生态研究和盗猎预警。 智能养殖设备: 为自动饲喂系统、健康监测设备等提供视觉识别能力,实现精准个体识别。 教育研究工具: 适用于动物行为学研究和计算机视觉教学,提供标准化的多物种检测数据集。 遥感图像分析: 支持航拍图像中的动物种群分布分析,适用于生态调查和栖息地研究。 三、数据集优势 多物种覆盖: 包含10类常见经济动物和野生动物,覆盖陆生哺乳动物与家禽类别,满足跨场景需求。 高密度标注: 支持单图多目标检测,部分样本包含重叠目标标注,模拟真实场景下的复杂检测需求。 数据平衡性: 经分层抽样保证各类别均衡分布,避免模型训练时的类别偏差问题。 工业级适用性: 标注数据兼容YOLO系列模型框架,支持快速迁移学习和生产环境部署。 场景多样性: 包含白天/夜间、近距离/远距离、单体/群体等多种拍摄条件,增强模型鲁棒性。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值