如图,为使用到的公式,信息熵表明样本的混乱程度,增益表示熵减少了,即样本开始分类,增益率是为了平衡增益准则对可取值较多的属性的偏好,同时增益率带来了对可取值偏小的属性的偏好,实际中,先用增益进行筛选,选取大于增益平均值的,然后再选取其中增益率最高的。
以下代码纯粹手写,未参考其他人代码,如果问题,请不吝赐教。
1,计算信息熵的函数
import numpy as np
# 计算信息熵
# data:like np.array
# data.shape=(num_data,data_features+1) 即属性与label放一起了
def entropy(data,num_class):
class_set=list(set(data[:,-1]))
result=0
length=len(data)
# 这里修改一下,不使用num_class
for i in range(len(class_set)):
l=len(data[data[:,-1]==class_set[i]])
p=l/length
# 防止某类未出现,概率为0
if p>0:
result-=p*np.log2(p)
return result
Python学习qq群:10667510,送全套爬虫学习资料与教程~
2,计算增益及属性a的固有值(IV)
# 计算不同属性的信息增益
# detail_features:特征构成的list,每个特征的可取值构成list元素,即也是list
def calculate_gain(data,detail_features,num_class):
'''返回各属性对应的信息增益及平均值'''
result=[]
ent_data=entropy(data,num_class)
for i in range(len(detail_features)):
res=ent_data
for j in range(len(detail_features[i])):
# 有问题?
part_data=data[data[:,i]==detail_features[i][j]]
length=len(part_data)