引言
在现代数据驱动应用中,向量相似度搜索已成为核心功能之一。ScaNN(Scalable Nearest Neighbors)作为一种高效的向量相似度搜索方法,尤其适合于大规模数据集。在这篇文章中,我们将探讨如何使用ScaNN进行高效的向量相似搜索,并结合实际代码示例展示其强大功能。
主要内容
ScaNN简介
ScaNN是一款由Google Research开发的工具,专为大规模向量搜索设计。它引入了搜索空间剪枝和量化技术来加速内积最大化搜索,同时支持其他距离函数如欧氏距离等。ScaNN的实现针对支持AVX2的x86处理器进行了优化。
安装ScaNN
要使用ScaNN,首先需要安装它。你可以使用以下命令通过pip安装:
%pip install --upgrade --quiet scann
为了集成ScaNN和Langchain社区工具,还需要安装langchain-community
:
%pip install -qU langchain-community
向量检索演示
下面展示如何结合Huggingface Embeddings使用ScaNN进行向量检索: