使用ScaNN进行高效的向量相似性检索:从入门到精通

# 引言
随着机器学习和自然语言处理的发展,向量相似性检索在许多应用中变得越来越重要。ScaNN(Scalable Nearest Neighbors)是一种专为大规模向量相似性检索优化的方法。无论是进行内积搜索还是欧几里得距离等其他距离函数的计算,ScaNN都能提供高效的解决方案。本文将探讨如何使用ScaNN进行向量检索,并结合代码示例以帮助您轻松上手。

# 主要内容

## ScaNN概述
ScaNN通过搜索空间修剪和量化来实现高效的最大内积搜索,并支持欧几里得距离等其他距离计算。它的实现针对支持AVX2的x86处理器进行优化。

## 安装
要使用ScaNN,您需要先安装相关模块。可以通过以下方式安装:
```bash
pip install --upgrade --quiet scann langchain-community

或者按照ScaNN官网上的说明从源码安装。

检索演示

以下是ScaNN与Huggingface Embeddings结合使用的示例代码:

from langchain_community.document_loaders import TextLoader
from langchain_community
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值