# 引言
随着机器学习和自然语言处理的发展,向量相似性检索在许多应用中变得越来越重要。ScaNN(Scalable Nearest Neighbors)是一种专为大规模向量相似性检索优化的方法。无论是进行内积搜索还是欧几里得距离等其他距离函数的计算,ScaNN都能提供高效的解决方案。本文将探讨如何使用ScaNN进行向量检索,并结合代码示例以帮助您轻松上手。
# 主要内容
## ScaNN概述
ScaNN通过搜索空间修剪和量化来实现高效的最大内积搜索,并支持欧几里得距离等其他距离计算。它的实现针对支持AVX2的x86处理器进行优化。
## 安装
要使用ScaNN,您需要先安装相关模块。可以通过以下方式安装:
```bash
pip install --upgrade --quiet scann langchain-community
或者按照ScaNN官网上的说明从源码安装。
检索演示
以下是ScaNN与Huggingface Embeddings结合使用的示例代码:
from langchain_community.document_loaders import TextLoader
from langchain_community