机器学习第九课(bagging,随机森林,样本不均衡)

本文介绍了随机森林的构建过程,包括行和列的随机采样以及不剪枝的特点,强调了多棵弱决策树组合的强大效果。此外,还探讨了面对样本不均衡问题时,选择对多数类降采样的优势以及聚类再采样的策略,以改善分类效果和提高效率。
摘要由CSDN通过智能技术生成

Bagging




评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值