发表于2013-01-18 11:35| 8827次阅读| 来源sina微博| 15 条评论| 作者邓侃
文章来自邓侃的博客。数据革命迫在眉睫。不仅学术意义巨大,而且离钱很近。所以,各大公司重兵集结,虎视眈眈。Google 兵分两路,左路以 Jeff Dean 和 Andrew Ng 为首,重点突破 Deep Learning 等等算法和应用,右路军由Amit Singhal领军,目标是构建Knowledge Graph基础设施。而在攻克技术难题之后,就是动用资本和商业的强力手段,跑马圈地了。
Google的Amit Singhal
以下为全文:
2013年1月15日,新浪微博@王威廉发了一条消息,说机器学习领域的大牛,Alex Smola入盟CMU,讲授机器学习入门课程,该课程的视频将在网上公开。
我回应了几个帖子,聊聊 CMU 与机器学习的研究进展。@老师木回复说,“机器学习是伪科学”。网友 @y_y_n_i_l 则说,“整天在实验室里面折腾算法,不如实际搞大系统”。
两个人的观点,都有出处。
图灵在1950年的论文里,提出图灵试验的设想,即,隔墙对话,你将不知道与你谈话的,是人还是电脑 [1]。
这无疑给计算机,尤其是人工智能,预设了一个很高的期望值。但是半个世纪过去了,人工智能的进展,远远没有达到图灵试验的标准。这不仅让多年翘首以待的人们,心灰意冷,认为人工智能是忽悠,相关领域是“伪科学”。
2008年6月,“连线”杂志主编Chris Anderson发表文章,题目是 “理论的终极,数据的泛滥将让科学方法过时”。并且文中还引述经典著作“人工智能的现代方法”的合著者,时任Google研究总监的Peter Norvig的言论,说:“一切模型都是错的。进而言之,抛弃它们,你就会成功”[2]。
言下之意,精巧的算法是无意义的。面对海量数据,即便只用简单的算法,也能得到出色的结果。与其钻研算法,不如研究云计算,处理大数据。
如果这番言论,发生在2006年以前,可能我不会强力反驳。但是自2006年以来,机器学习领域,取得了突破性的进展。
图灵试验,至少不是那么可望而不可即了。至于技术手段,不仅仅依赖于云计算对大数据的并行处理能力,而且依赖于算法。这个算法就是,Deep Learning。
借助于Deep Learning 算法,人类终于找到了如何处理 “抽象概念”这个亘古难题的方法。
于是学界忙着延揽相关领域的大师。Alex Smola加盟CMU,就是这个背景下的插曲。悬念是Geoffrey Hinton 和 Yoshua Bengio 这两位牛人,最后会加盟哪所大学?
Geoffrey Hinton曾经转战Cambridge、CMU,目前任教University of Toronto。相信挖他的名校一定不少。
Yoshua Bengio 经历比较简单,McGill University 获得博士后,去MIT追随Mike Jordan做博士后。目前任教University of Montreal。
Deep Learning 引爆的这场革命,不仅学术意义巨大,而且离钱很近,实在太近了。如果把相关技术难题比喻成一座山,那么翻过这座山,山后就是特大露天金矿。技术难题解决以后,剩下的事情,就是动用资本和商业的强力手段,跑马圈地了。
于是各大公司重兵集结,虎视眈眈。Google 兵分两路,左路以 Jeff Dean 和 Andrew Ng 为首,重点突破 Deep Learning 等等算法和应用 [3]。
Jeff Dean在Google诸位 Fellows 中,名列榜首,GFS就是他的杰作。Andrew Ng本科时,就读CMU,后来去MIT追随 Mike Jordan。Mike Jordan在MIT人缘不好,后来愤然出走UC Berkeley。Andrew Ng毫不犹豫追随导师,也去了Berkeley。拿到博士后,任教Stanford,是Stanford新生代教授中的佼佼者,同时兼职 Google。
Google右路军由Amit Singhal领军,目标是构建Knowledge Graph基础设施。
1996年Amit Singhal从Cornell University拿到博士学位后,去Bell Lab工作,2000年加盟Google。据说他去Google面试时,对Google创始人Sergey Brian说,“Your engine is excellent, but let me rewirte it!”[4]
换了别人,说不定一个大巴掌就扇过去了。但是Sergey Brian大人大量,不仅不怪罪小伙子的轻狂,反而真的让他从事新一代排名系统的研发。Amit Singhal目前任职Google高级副总裁,掌管Google 最核心的业务,搜索引擎。
Google把王牌中之王牌,押宝在Deep Learning和Knowledge Graph上,目的是更快更大地夺取大数据革命的胜利果实。
Reference:
[1] Turing Test.
http://en.wikipedia.org/wiki/Turing_test
[2] The End of Theory: The Data Deluge Makes the Scientific Method Obsolete
http://www.wired.com/science/discoveries/magazine/16-07/pb_theory
[3] Introduction to Deep Learning.
http://en.wikipedia.org/wiki/Deep_learning
[4] Interview with Amit Singhal, Google Fellow.
http://searchengineland.com/interview-with-amit-singhal-google-fellow-121342
业内将有数场公开课,请关注!
来源:http://www.csdn.net/article/2013-01-18/2813813-Google-DeepLearningKnowledge-and-Graph