用二极管、三极管和MOS管搭建逻辑门电路,你确定这些电路图不收藏?

常见的晶体管有二极管、三极管和MOS管,主要的逻辑门电路:与门、或门、非门、与非门、或非门、异或门等,这篇博客介绍用晶体管搭建常见的逻辑门电路。

废话不多说,直接上图,电路图均是博主自己画的,先点赞,再收藏,再慢慢看,养成良好的习惯,觉得有疑问的地方,可以评论一起交流。

1. 二极管

① 二极管与门

用两个二极管组成的与门,A和B都为高电平时,Y才为高电平。

在这里插入图片描述

用1个二极管和1个电阻也可以组成与门。

在这里插入图片描述

② 二极管或门

从下图两个或门电路可以看出,A和B只要有一个为高电平,输出Y就为高电平。

在这里插入图片描述

同样的,用1个电阻和1个二极管也可以组成或门。

在这里插入图片描述


2. 三极管

① 三极管非门

A为高电平,T1导通,Y为低电平;A为低电平,T1截止,Y为高电平。

在这里插入图片描述

② 三极管与门

用2个NPN三极管搭建与门;A和B都为高电平时,T2和T3都导通,此时Y为高电平。

在这里插入图片描述

用1个NPN和1个PNP搭建的与门,当A和B均为高电平时,T4和T6都导通,Y为高电平。

在这里插入图片描述

③ 三极管或门

在二极管或门基础上,可以加一个NPN三极管,也可以组成或门,A和B只要有一个高电平,T5就会导通,Y会由低电平变为高电平;当A和B都为低电平时,T5才截止,Y为低电平。

在这里插入图片描述

④ 三极管与非门

与非门由与门和非门组成,在三极管与门基础上稍作修改,可以变为三极管与非门。

在这里插入图片描述

⑤ 三极管或非门

用2个PNP三极管搭建的或非门,A和B只要有一个高电平,Y就为低电平;当A和B都为低电平时,T9和T10均导通,Y为高电平。

在这里插入图片描述


3. MOS管

① MOS管非门

用1个NMOS和1个PMOS搭建的非门;当A为高电平时,T1截止,T2导通,Y为低电平;当A为低电平时,T1导通,T2截止,Y为高电平。

在这里插入图片描述

② MOS管与非门

  • 备注:T3和T4为NMOS,T5和T6为PMOS;
  • A=0,B=0时,T5和T6导通,T3和T4截止,Y=1
  • A=1,B=0时,T3和T6截止,T4和T5导通,Y=1
  • A=0,B=1时,T3和T6导通,T4和T5截止,Y=1
  • A=1,B=1时,T5和T6截止,T3和T4导通,Y=0

    在这里插入图片描述

③ MOS管或非门

  • 备注:T7和T8为NMOS,T9和T10为PMOS;
  • A=0,B=0时,T9和T10导通,T7和T8截止,Y=1
  • A=1,B=0时,T7和T9截止,T8和T10导通,Y=0
  • A=0,B=1时,T7和T9导通,T8和T10截止,Y=0
  • A=1,B=1时,T9和T10截止,T7和T8导通,Y=0

    在这里插入图片描述

4. 真值表

通过真值表能反映一个电路的功能,优秀的记得诚给出了如下门电路的真值表,小伙伴门可以巩固下各个门电路的功能。

① 与门

与门功能:输入都为1,输出才为1,只要有一个0,输出就为0,记作Y=ABY=A*BY=ABY=AB

A B Y
0 0 0
0 1 0
1 0 0
1 1 1

② 或门

或门功能:输入只要有一个1,输出就为1,记作Y=A+BY=A+B

A B Y
0 0 0
0 1 1
1 0 1
1 1 1

③ 非门

非门:非门也叫反相器,即输入1,输出0,输入0,输出1,记作Y=AY=\overline{A}Y=AY=A'

A Y
0 1
1 0

④ 与非门

与非门:与非门是与门与非门的结合,先与后非,记作Y=ABY=\overline{AB}Y=(AB)Y=(AB)'

A B Y
0 0 1
0 1 1
1 0 1
1 1 0

⑤ 或非门

或非门:或非门是或门与非门的结合,先或后非,记作Y=A+BY=\overline{A+B}Y=(A+B)Y=(A+B)'

A B Y
0 0 1
0 1 0
1 0 0
1 1 0

5. 小结一下

用晶体管绘制常见的逻辑门电路,会让我们对晶体管的特性更加熟悉,在电路设计时更加的从容淡定,也常出现在硬件工程师的笔试题中,总之一句话,会了这些,你就是街上最靓的GAI;

在这里插入图片描述


永远相信美好的事情即将发生!作者记得诚,写于安徽合肥,时间2020-04-22 PM01:15

记得诚 CSDN认证博客专家 电子爱好者 原创洁癖患者
微信搜索【记得诚电子设计】,第一时间阅读原创干货文章,一位硬件工程师的原创分享,涵盖电路设计、PCB设计、电子元器件、电子电路和硬件科普等内容,涉及无线通信、嵌入式、物联网、GNSS定位和车载等领域。
©️2020 CSDN 皮肤主题: 编程工作室 设计师: CSDN官方博客 返回首页
实付0元
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、C币套餐、付费专栏及课程。

余额充值