基于CodeFormer的人脸修复模型配置

本文介绍了如何在Python环境中配置和使用CodeFormer,一个基于AI的深度学习模型,对旧照片进行人脸修复,包括下载源码、安装依赖、模型下载以及实际修复操作的步骤和效果展示。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

背景

  近期在进行图像处理相关需求的时候,需要对旧照片进行修复,并了解到了 CodeFormer 这个基于AI技术深度学习的人脸复原模型,对其进行环境配置和试用,特此记录。

步骤

  1. 源码下载并解压进入目录
    1. git clone https://github.com/sczhou/CodeFormer.git
    2. unzip CodeFormer-master.zip
    3. cd CodeFormer-master
  2. 环境安装(清华源有时候会慢,在安装过程中使用的阿里云的源):
    1. conda create -n codeformer python=3.8 -y
    2. conda activate codeformer
    3. pip3 install -r requirements.txt -i https://mirrors.aliyun.com/pypi/simple
    4. python basicsr/setup.py develop
    5. conda install -c conda-forge dlib
  3. 模型下载后放置到指定文件夹
    1. weights/facelib 文件夹存放
      1. yolov5n-face.pth
      2. detection_mobilenet0.25_Final.pth
      3. detection_Resnet50_Final.pth
      4. parsing_parsenet.pth
      5. yolov5l-face.pth
    2. weights/CodeFormer 文件夹存放
      1. codeformer.pth
  4. 测试模型
    1. 单独图片人脸修复:python inference_codeformer.py -w 0.2 --has_aligned --input_path face.jpg
      1. 输出: Background upsampling: False, Face upsampling: False [1/1] Processing: face.jpg All results are saved in results/test_img_0.2

执行过程


[人脸修复]基于CodeFormer的人脸修复模型配置-修复效果

总结

  基于CodeFormer,搭建环境后对人脸进行修复,并举出修复效果。

参考

  1. https://gitee.com/alexgaoyh
  2. https://pap-docs.pap.net.cn/
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值