【AI论文】Visual Instruction Tuning

文献核心目标

作者的目标是通过多模态指令微调(Visual Instruction Tuning)来训练一个通用的视觉助手,使其能够理解用户的语言指令并与视觉内容结合完成任务。例如,用户可以上传图片并提出问题,模型根据图片内容作出回答。

1. 引言

什么是多模态交互?为什么重要?

人类的多模态交互

  • 人类通过多种感知渠道(如视觉、语言)来理解和互动世界。
  • 不同的感知渠道各有优势:
    • 视觉:擅长处理图像和视觉信息。
    • 语言:擅长表达抽象概念。
  • 将这些感知渠道结合起来,可以帮助我们更全面地理解世界。

人工智能的目标

  • 人工智能的核心目标之一是开发多模态通用助手
  • 这种助手需要能够理解并执行视觉和语言结合的指令,完成各种现实任务。

当前问题:现有方法的局限性

现有视觉模型的局限

  • 当前许多视觉模型(如分类、检测、分割、生成等任务)性能强大,但存在以下问题:
    • 单任务导向:这些模型通常为单一任务而设计,缺乏通用性。
    • 交互性不足:模型只能根据固定的任务设计工作,无法灵活适应用户的复杂指令。
    • 语言的局限:语言仅用于描述图像内容,而不是灵活地表达任务指令。

语言模型的启发

  • 大型语言模型(LLM),如 ChatGPT 和 GPT-4,展示了语言作为通用接口的潜力:
    • 明确任务指令:通过语言可以清晰表达任务需求。
    • 灵活性强:可以根据用户输入动态切换任务。
  • 但目前的语言模型主要基于纯文本,缺乏处理视觉信息的能力。

新研究的目标:视觉指令调优

研究目标

  • 视觉指令调优:将“指令调优”(Instruction Tuning)的方法从文本领域扩展到“视觉-语言多模态”领域。
  • 目标是开发一个能够理解图像和语言组合指令的通用视觉助手,以完成多模态任务。

研究贡献

1. 多模态指令数据的构建

  • 挑战:缺乏足够的视觉-语言指令数据。
  • 解决方案
    • 利用 ChatGPT 和 GPT-4,将现有的图像-文本对转换为“指令-响应”格式。
    • 例如,将“图像+描述”转化为“问题+答案”形式,使模型更好地理解任务。

2. 开发大型多模态模型

  • 模型架构
    • 使用 CLIP(一个视觉编码器)和 Vicuna(一种开源语言模型)相结合,构建新的多模态模型。
    • 使用生成的多模态指令数据进行端到端训练,使模型能够理解复杂的视觉-语言指令。
  • 实验结果
    • 实验证明,这种方法显著提升了模型的指令执行能力。
    • 当与 GPT-4 结合使用时,该模型在 Science QA 数据集上达到了最新的最高准确率

3. 多模态评估基准

  • 提出了新的评估基准(LLaVA-Bench),包括两个具有挑战性的多模态任务:
    • 配对的图像和指令。
    • 详细的任务标注。

4. 开源资源

  • 研究团队公开了以下资源,促进社区研究:
    • 生成的多模态指令数据。
    • 模型代码和训练好的模型。
    • 一个视觉聊天的演示工具。

2 相关工作

多模态指令执行模型

什么是多模态指令执行模型?
  • 多模态指令执行模型是一类能够同时理解视觉信息(如图像)和语言信息(如文字)的AI模型。
  • 它们可以根据人类提供的视觉和语言指令,完成各种任务。
  • 例如:
    • 根据文字指令对图片进行修改。
    • 在视觉环境中根据指令完成导航任务。
现有方法的分类

现有的多模态指令执行模型大致可以分为以下两类:

  1. 端到端训练的模型

    • 定义:这些模型是专门为某一特定任务设计的,能够从输入到输出完成整个任务。
    • 示例
      • 视觉-语言导航任务:例如在 Habitat [47] 平台上,AI根据自然语言指令(如“走到房间右侧的桌子旁”)在虚拟环境中导航。
      • 图像编辑任务:例如 InstructPix2Pix [6],它根据文字描述(如“将天空改为夜晚”)修改输入图像。
  2. 基于系统协调多个模型

    • 定义:这种方法通过一个“协调者”(通常是语言模型),将多个专用模型整合起来完成任务。
    • 示例
      • Visual ChatGPT [53]
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值