解决RuntimeError: Expected all tensors to be on the same device, but found at least two devices, cuda:

完整报错警告为:

RuntimeError: Expected all tensors to be on the same device, but found at least two devices, cuda:0 and cpu! (when checking argument for argument mat2 in method wrapper_mm)

或者

RuntimeError: Expected all tensors to be on the same device, but found at least two devices, cuda:0 and cpu! (when checking argument for argument mat1 in method wrapper_mm)

这是由于代码所写的某一位置的Tensor设备指代不清楚,正常情况下是不会出现这个错误的,但是个人总结了以下容易导致该错误产生的原因:

1.当你存在多GPU并行训练时

 这时候你的model里面传入的不只是Cuda:0,还有Cuda:1, Cuda:2等等,这个时候,你的网络模型model里面的forward函数里面就及其容易报错,因为里面存在的一些定维度的Tensor,比如权重、偏差的device容易跑偏。

2.当你单GPU正常使用Cuda:0:

这时候按理来说,只要device代码指代正常,按理来说不会出现设备问题,如果出现了,就是tensor的格式没有传入cuda而是保留在cpu。碰巧我某天训练时候就出现了,思路跟上面一样,最容易出现错误的地方是网络模型中固定维度的tensor如权重和偏差等tensor,或者是forward函数里面的输出.

下面直接给出解决办法:

1.在你网络的forward函数,先调出input的device,然后在输出的后面添加一句.to(device)

这样可以保证你无论是几个GPU,他在训练的时候都是会输出到正确的设备中

2.在你报错的代码中,通过debug观察到底是哪一块的参数设备不一致,然后通过一样的办法解决:

比如我那天在训练时,报错的地方是nn.Linear函数,很奇怪因为我是单GPU,按理来说不会出现这种情况。

 具体情况通过debug后发现,我的input的设备是'cuda:0',但是我linear[64,4]的权重矩阵,也就是weight的设备是cpu(这个具体要通过debug观察哪里出问题),于是改进方法如下解决问题:

### 解决ONNX模型转换时设备不一致问题 当尝试将PyTorch模型导出到ONNX格式时,如果遇到错误提示`Expected all tensors to be on the same device, but found at least two devices, cpu and cuda:0!`[^1],这表明模型中的张量位于不同的计算设备上(例如一部分在CPU上,另一部分在GPU上)。这种情况下,模型无法正常执行操作。 以下是针对该问题的具体解决方案: #### 1. 确保所有张量在同一设备上 在导出之前,需确认所有的张量都位于同一设备上。可以通过调用`.to(device)`方法来显式指定张量所在的设备。例如,在定义输入张量时可以这样做: ```python import torch device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') dummy_input = torch.randn(1, 3, 224, 224).to(device) # 将输入移动到目标设备 model.to(device) # 移动模型到相同的目标设备 ``` 上述代码片段确保了模型和输入数据均被放置于相同的设备上[^2]。 #### 2. 修改模型内部逻辑 某些情况下,模型本身可能涉及多个子模块或层的操作,这些操作可能会无意间引入不同设备上的张量。因此需要仔细检查模型实现,确保每一处使用的张量都在预期的设备上运行。例如,对于自定义初始化参数或其他辅助变量,也需要通过`.to(device)`将其同步至当前设备。 #### 3. 使用 `torch.onnx.export()` 的正确配置 在调用 `torch.onnx.export()` 函数时,应明确传递已调整好设备状态的模型与输入张量作为参数。如下所示是一个完整的导出示例: ```python torch.onnx.export( model, dummy_input, "model.onnx", input_names=["input"], output_names=["output"], opset_version=11 ) ``` 这里需要注意的是,`opset_version` 参数的选择也会影响最终导出的成功与否以及兼容性。 #### 4. 验证 ONNX 模型的有效性 完成导出之后,建议利用工具库如 `onnxruntime` 来加载并测试生成的 ONNX 文件是否能够成功推理。这样可以帮助进一步验证修复措施的效果。 --- ### 总结 为了防止因设备差异引发的错误,关键是统一管理整个流程中涉及到的所有张量所归属的硬件资源位置;无论是训练阶段还是部署环节都需要保持一致性处理方式。只有这样才能有效规避诸如 “expected all tensors...” 类似的异常情况发生。
评论 8
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值