如何用AI实现视频防抖?台湾大学和谷歌提出NeRViS:无需裁剪的全帧视频稳定算法...

点击上方“CVer”,选择加"星标"置顶

重磅干货,第一时间送达

鱼羊 发自 凹非寺
来源:量子位(QbitAI)

右边的画面,是不是比左边的画面看上去稳定许多?

这样的效果,大家可能并不陌生。现在,不少手机厂商都为自家手机配备了类似的防抖算法,为你拍摄生活Vlog提供便利。

不过,目前的智能手机在面对复杂的抖动时,主要是通过电子防抖(EIS)的方式来实现画面的稳定。

也就是说,需要对画面的边界进行裁剪,通过“后期处理”,实现画面的稳定:

图片来自TDK

而现在,一项来自台湾大学、谷歌、弗吉尼亚理工大学和加州大学默塞德分校等研究机构的论文,提出了一种无需裁剪的全帧视频稳定算法

NeRViS
Neural Re-rendering for Full-frame Video Stabilization

论文:https://arxiv.org/abs/2102.06205

项目:https://alex04072000.github.io/NeRViS

代码:https://github.com/alex04072000/NeRViS

即使是奔跑中拍摄的画面,也能稳定不少。

那么,这只AI具体是如何做到防抖的?

方法原理

该方法的核心思想,是融合视频中多个相邻帧的信息,来呈现无需裁剪的完整稳定视频。

具体而言,对于输入视频,首先对每一帧图像特征进行编码,并在目标时间戳处将相邻帧翘曲至虚拟相机空间。

这里面主要用到了目标帧到关键帧的翘曲场,以及从关键帧到相邻帧的估计光流两个信息,这样,就可以通过链接流向量,计算目标帧到相邻帧的翘曲场。

然后,融合这些特征。

传统的全景图像拼接算法通常是在图像级别进行融合。这样做的缺点在于,如果估计光流不可靠,就会产生伪影。

而将图像编码为CNN特征,再在特征空间中进行融合的方法更具鲁棒性,但又往往会产生过于模糊的图像(如下图b)。

于是,研究人员提出结合两种策略的优点:首先将图像编码为CNN特征,然后从多个帧中融合翘曲特征。

对于每个源帧,研究人员将融合特征图和各个翘曲特征一起,解码成输出帧和相关的置信度图。

最后,通过使用生成图像的加权平均,来产生最终的输出帧。

实验结果

研究人员在NUS数据集和自拍视频数据集上验证了该方法。

标红的为最佳结果

在上表中,DIFRINT方法同样是无需裁剪的方法。虽然该方法在失真值(distortion value)上略优于本文方法,但如下图所示,DIFRINT的结果中有明显的局部失真。

总体而言,本文提出的方法优于此前的SOTA方法。

不过,论文也谈到了该方法的局限性,比如对卷帘式快门无效;如果视频帧间亮度变化很大,会导致明显的接缝;预处理阶段的平滑方法可能会导致失真等。

传送门

根据作者介绍,该项目即将开源,如果感兴趣,不妨先mark一下~

代码地址:

https://github.com/alex04072000/NeRViS

CV资源下载

后台回复:CVPR2020,即可下载代码开源的论文合集

后台回复:ECCV2020,即可下载代码开源的论文合集

后台回复:YOLO,即可下载YOLOv4论文和代码

后台回复:Transformer综述,即可下载两个最新的视觉Transformer综述PDF,肝起来!

重磅!CVer-细分垂直交流群成立

扫码添加CVer助手,可申请加入CVer-细分垂直方向 微信交流群,可申请加入CVer大群,细分方向已涵盖:目标检测、图像分割、目标跟踪、人脸检测&识别、OCR、姿态估计、超分辨率、SLAM、医疗影像、Re-ID、GAN、NAS、深度估计、自动驾驶、强化学习、车道线检测、模型剪枝&压缩、去噪、去雾、去雨、风格迁移、遥感图像、行为识别、视频理解、图像融合、图像检索、论文投稿&交流、Transformer、PyTorch和TensorFlow等群。

一定要备注:研究方向+地点+学校/公司+昵称(如目标检测+上海+上交+卡卡),根据格式备注,才能通过且邀请进群

▲长按加微信群

▲点击上方卡片,关注CVer公众号

整理不易,请给CVer点赞和在看

<think>好的,我需要帮用户了解手机相机的防抖技术及其实现方法。首先,我得整理一下现有的引用资料,看看里面提到了哪些防抖技术。 引用1提到了Ultra Steady视频超级防抖,结合120度超广角镜头算法,开启Pro模式后画质更稳。这说明有软件算法硬件镜头的结合。引用2提到定时拍摄防抖,属于软件层面的方法。引用5详细讲了光学防抖(OIS),特别是在暗光环境下通过补偿抖动来提高照片质量,类似三脚架的效果。引用4讨论了拍照技术的进步,包括防抖让移动场景拍摄更清晰,这可能涉及OIS电子防抖(EIS)。还有HDR、超分、夜景模式这些可能与防抖算法相关,比如多帧合成降噪。 接下来需要将这些信息分类。防抖技术通常分为硬件软件两种。硬件方面有OIS,软件方面有EIS、算法优化(如多帧合成、超广角裁剪)、定时拍摄等。可能还需要提到不同厂商的技术,比如华为P40系列的摄像头组合新技术,如引用3提到的。 用户可能还想知道各种技术的原理效果,比如OIS如何通过移动镜头或传感器抵消抖动,EIS如何通过裁剪算法稳定画面。此外,多摄像头协同工作,比如超广角镜头提供更宽视野,方便后期调整,这也是防抖的一部分。还有,结合AI预测抖动轨迹,实时调整,这可能属于高级算法。 需要确保回答结构清晰,分点说明,每个技术点给出简要解释,并引用对应的资料。例如,光学防抖引用5,电子防抖引用4,算法结合硬件引用1,定时拍摄引用2,多摄像头引用3。同时,可能还需要补充一些常见的技术术语,如传感器位移防抖,以及厂商的特定技术名称,如华为的AIS等。 最后,生成相关问题时要覆盖不同方面,比如技术原理、对比、应用场景、未来趋势等,帮助用户进一步探索。检查是否有遗漏的技术点,比如混合防抖(OIS+EIS),或者AI防抖中的应用,这些可能在资料中没有明确提到,但根据常识可以补充,不过要注明是推测。需要确保回答准确,引用正确,符合用户的要求。</think>### 手机相机防抖技术及实现方法 手机相机防抖技术主要分为**硬件防抖****软件算法防抖**两类,通过多维度协同实现拍摄稳定性。 --- #### 一、硬件防抖技术 1. **光学防抖(OIS)** - **原理**:通过镜头组或图像传感器(CMOS)的微小位移,实时补偿手部抖动带来的偏移。例如,陀螺仪检测抖动方向后,驱动微型马达反向调整镜头位置[^5]。 - **优势**:直接抵消物理抖动,尤其适用于暗光环境下的长曝光拍摄,能显著减少模糊[^5]。 - **局限**:对高频振动(如快速跑动)补偿能力有限。 2. **传感器位移防抖** - **原理**:通过移动图像传感器(而非镜头)来抵消抖动,常见于高端机型。此技术可提供更灵活的补偿幅度。 --- #### 二、软件算法防抖 1. **电子防抖(EIS)** - **原理**:通过算法裁剪画面边缘并动态调整画面中心区域,结合陀螺仪数据预测抖动轨迹,实时修正画面[^4]。 - **示例**:超广角镜头配合防抖算法(如“Ultra Steady”模式),利用更广的视野为裁剪留出冗余空间,实现稳定视频录制[^1]。 2. **多帧合成技术** - **原理**:快速连拍多张照片,通过对齐融合算法(如HDR、超分)消除模糊帧,提升画面纯净度。 - **应用**:夜景模式中,长曝光结合多帧降噪可减少抖动影响[^5]。 3. **AI预测与补偿** - **原理**:利用机器学习模型预测手部抖动趋势,提前调整曝光参数或画面裁剪范围。 --- #### 三、辅助防抖方法 1. **定时拍摄** - 通过延时触发快门(如2秒定时),避免手指按压瞬间的抖动[^2]。 2. **多摄像头协同** - 多焦段摄像头组合(如华为P40系列)可切换不同镜头适配场景,超广角镜头为防抖提供更多画面冗余[^3]。 --- #### 四、技术对比与趋势 - **OIS vs EIS**:OIS硬件成本高但效果直接,EIS依赖算力但灵活性更强。高端机型常采用**OIS+EIS混合防抖**(如华为AIS)。 - **未来方向**:AI算法优化(如动态模糊建模)、更高精度的传感器协同(如LiDAR辅助对焦)[^4]。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值