TransGAN: Two Transformers Can Make One Strong GAN

两个Transformers可变成一个强GAN!表现SOTA,性能优于AUTOGAN、SN-GAN等网络,部分代码刚刚开源!

注1:文末附【Transformer】和【GAN】交流群

注2:整理不易,欢迎点赞,支持分享!

TransGAN: Two Transformers Can Make One Strong GAN
在这里插入图片描述

  • 作者单位:UT-Austin, IBM研究院
  • 代码:https://github.com/VITA-Group/TransGAN
  • 论文:https://arxiv.org/abs/2102.07074

最近对Transformer的爆炸性兴趣表明,它们有潜力成为计算机视觉任务(例如分类,检测和分割)的强大“通用”模型。但是,Transformer还能走多远?他们准备好解决一些更难的视觉任务,例如生成对抗网络(GAN)吗?

在这种好奇心的驱使下,我们进行了第一个试点研究,即仅使用基于Transformer的架构来构建GAN ,完全没有卷积!

我们的GAN架构称为TransGAN,由一个基于memory的基于转

  • 1
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值