CVPR 2022 | 阿里达摩院提出ABPN:高清人像美肤模型

点击下方卡片,关注“CVer”公众号

AI/CV重磅干货,第一时间送达

点击进入—>CV微信技术交流群

一、论文&代码

论文:

https://openaccess.thecvf.com/content/CVPR2022/papers/Lei_ABPN_Adaptive_Blend_Pyramid_Network_for_Real-Time_Local_Retouching_of_CVPR_2022_paper.pdf
模型&代码:

https://www.modelscope.cn/models/damo/cv_unet_skin-retouching/summary

二、背景

随着数字文化产业的蓬勃发展,人工智能技术开始广泛应用于图像编辑和美化领域。其中,人像美肤无疑是应用最广、需求最大的技术之一。传统美颜算法利用基于滤波的图像编辑技术,实现了自动化的磨皮去瑕疵效果,在社交、直播等场景取得了广泛的应用。然而,在门槛较高的专业摄影行业,由于对图像分辨率以及质量标准的较高要求,人工修图师还是作为人像美肤修图的主要生产力,完成包括匀肤、去瑕疵、美白等一系列工作。通常,一位专业修图师对一张高清人像进行美肤操作的平均处理时间为1-2分钟,在精度要求更高的广告、影视等领域,该处理时间则更长。


相较于互娱场景的磨皮美颜,广告级、影楼级的精细化美肤给算法带来了更高的要求与挑战。一方面,瑕疵种类众多,包含痘痘、痘印、雀斑、肤色不均等,算法需要对不同瑕疵进行自适应地处理;另一方面,在去除瑕疵的过程中,需要尽可能的保留皮肤的纹理、质感,实现高精度的皮肤修饰;最后也是十分重要的一点,随着摄影设备的不断迭代,专业摄影领域目前常用的图像分辨率已经达到了4K甚至8K,这对算法的处理效率提出了极其严苛的要求。为此,我们以实现专业级的智能美肤为出发点,研发了一套高清图像的超精细局部修图算法ABPN,在超清图像中的美肤与服饰去皱任务中都实现了很好的效果与应用。

三、相关工作

3.1 传统美颜算法

传统美颜算法的核心就是让皮肤区域的像素变得更平滑,降低瑕疵的显著程度,从而使皮肤看起来更加光滑。一般来说,现有的美颜算法可划分为三步:1)图像滤波算法,2)图像融合,3)锐化。整体流程如下:

6c0cb2f6276554c4276e6ebda812fddc.png


其中为了实现皮肤区域的平滑,同时保留图像中的边缘,传统美颜算法首先使用保边滤波器(如双边滤波、导向滤波等)来对图像进行处理。不同于常用的均值滤波、高斯滤波,保边滤波器考虑了不同区域像素值的变化,对像素变化较大的边缘部分以及变化较为平缓的中间区域像素采取不同的加权,从而实现对于图像边缘的保留。而后,为了不影响背景区域,分割检测算法通常被用于定位皮肤区域,引导原图与平滑后的图像进行融合。最后,锐化操作可以进一步提升边缘的显著性以及感官上的清晰度。下图展示了目前传统美颜算法的效果:

0e10fb1d1d223315a79fad3eb128e43c.png

原图像来自unsplash[31]


从效果来看,传统美颜算法存在两大问题:1)对于瑕疵的处理是非自适应的,无法较好的处理不同类型的瑕疵。2)平滑处理造成了皮肤纹理、质感的丢失。这些问题在高清图像中尤为明显。

3.2 现有深度学习算法


为了实现皮肤不同区域、不同瑕疵的自适应修饰,基于数据驱动的深度学习算法似乎是更好的解决方案。考虑任务的相关性,我们对Image-to-Image Translation、Photo Retouching、Image Inpainting、High-resolution Image Editing这四类现有方法对于美肤任务的适用性进行了讨论和对比。

3.2.1 Image-to-Image Translation


图像翻译(Image-to-Image Translation)任务最开始由pix2pix[1]所定义,其将大量计算机视觉任务总结为像素到像素的预测任务,并且提出了一个基于条件生成对抗网络的通用框架来解决这类问题。基于pix2pix[1],各类方法被陆续提出以解决图像翻译问题,其中包括利用成对数据(paired images)的方法[2,3,4,5]以及利用非成对数据(unpaired images)的方法[6,7,8,9]。一些工作聚焦于某些特定的图像翻译任务(比如语义图像合成[2,3,5],风格迁移等[9,10,11,12]),取得了令人印象深刻效果。然而,上述大部分的图像翻译主要关注于图像到图像的整体变换,缺乏对于局部区域的注意力,这限制了其在美肤任务中的表现。

3.2.2 Photo Retouching

受益于深度卷积神经网络的发展,基于学习的方法[13,14,15,16]近年来在修图领域展现了出色的效果。然而,与大多数图像翻译方法相似的是,现有的retouching算法主要聚焦于操控图像的一些整体属性,比如色彩、光照、曝光等。很少关注局部区域的修饰,而美肤恰恰是一个局部修饰任务(Local Photo Retouching),需要在修饰目标区域的同时,保持背景区域不动。


3.2.3 Image Inpainting

图像补全(image inpainting)算法常用于对图像缺失的部分进行补全生成,与美肤任务有着较大的相似性。凭借着强大的特征学习能力,基于深度生成网络的方法[17,18,19,20]这些年在inpainting任务中取得了巨大的进步。然而,inpainting方法依赖于目标区域的mask作为输入,而在美肤以及其他局部修饰任务中,获取精确的目标区域mask本身就是一个非常具有挑战性的任务。因而,大部分的image inpainting任务无法直接用于美肤。近年来,一些blind image inpainting的方法[21,22,23]摆脱了对于mask的依赖,实现了目标区域的自动检测与补全。尽管如此,同大多数其他image inpainting方法一样,这些方法存在两个问题:a)缺乏对于目标区域纹理及语义信息的充分利用,b)计算量较大,难以应用于超高分辨率图像。

3.2.4 High-resolution Image Editing


为了实现高分辨率图像的编辑,[15,24,25,26]等方法通过将主要的计算量从高分辨率图转移到低分辨率图像中,以减轻空间和时间的负担。尽管在效率上取得了出色的表现,由于缺乏对于局部区域的关注,其中大部分方法都不适用于美肤这类局部修饰任务。
综上,现有的深度学习方法大都难以直接应用于美肤任务中,主要原因在于缺乏对局部区域的关注或者是计算量较大难以应用于高分辨率图像。

四、基于自适应混合金字塔的局部修图框架


美肤本质在于对图像的编辑,不同于大多数其他图像转换任务的是,这种编辑是局部的。与其相似的还有服饰去皱,商品修饰等任务。这类局部修图任务具有很强的共通性,我们总结其三点主要的困难与挑战:1)目标区域的精准定位。2)具有全局一致性以及细节保真度的局部生成(修饰)。3)超高分辨率图像处理。为此,我们提出了一个基于自适应混合金字塔的局部修图框架(ABPN: Adaptive Blend Pyramid Network for Real-Time Local Retouching of Ultra High-Resolution Photo, CVPR2022,[27]),以实现超高分辨率图像的精细化局部修图,下面我们对其实现细节进行介绍。

4.1 网络整体结构

18576ef0542409883097570627ec59ea.png


如上图所示,网络结构主要由两个部分组成:上下文感知的局部修饰层(LRL)和自适应混合金字塔层(BPL)。其中LRL的目的是对降采样后的低分辨率图像进行局部修饰,生成低分辨率的修饰结果图,充分考虑全局的上下文信息以及局部的纹理信息。进一步,BPL用于将LRL中生成的低分辨率结果逐步向上拓展到高分辨率结果。其中,我们设计了一个自适应混合模块(ABM)及其逆向模块(R-ABM),利用中间混合图层Bi,可实现原图与结果图之间的自适应转换以及向上拓展,展现了强大的可拓展性和细节保真能力。我们在脸部修饰及服饰修饰两个数据集中进行了大量实验,结果表明我们的方法在效果和效率上都大幅度地领先了现有方法。值得一提的是,我们的模型在单卡P100上实现了4K超高分辨率图像的实时推理。下面,我们对LRL、BPL及网络的训练loss分别进行介绍。


4.2 上下文感知的局部修饰层(Context-aware Local Retouching Layer)


在LRL中,我们想要解决三中提到的两个挑战:目标区域的精准定位以及具有全局一致性的局部生成。如Figure 3所示,LRL由一个共享编码器、掩码预测分支(MPB)以及局部修饰分支(LRB)构成。

1e92ac1de0e72e50536fe8f5035db4a3.png

21f64ffa38374588807ff0fe8891f0f7.png


总得来说,我们使用了一个多任务的结构,以实现显式的目标区域预测,与局部修饰的引导。其中,共享编码器的结构可以利用两个分支的共同训练优化特征,提高修饰分支对于目标全局的语义信息和局部的感知。大多数的图像翻译方法使用传统的encoder-decoder结构直接实现局部的编辑,没有将目标定位与生成进行解耦,从而限制了生成的效果(网络的容量有限),相比之下多分支的结构更利于任务的解耦以及互利。在局部修饰分支LRB中我们设计了LAM(Figure 4),将空间注意力机制与特征注意力机制同时作用,以实现特征的充分融合以及目标区域的语义、纹理的捕捉。消融实验(Figure 6)展现了各个模块设计的有效性。


4.3 自适应混合金字塔层(Adaptive Blend Pyramid Layer)


LRL在低分辨率上实现了局部修饰,如何将修饰的结果拓展到高分辨率同时增强其细节保真度?这是我们在这部分想要解决的问题。


4.3.1 自适应混合模块(Adaptive Blend Module)

在图像编辑领域,混合图层(blend layer)常被用于与图像(base layer)以不同的模式混合以实现各种各样的图像编辑任务,比如对比度的增强,加深、减淡操作等。通常地,给定一张图片e2ce0aa86c1b871a1acb5b03cb9e2766.png,以及一个混合图层89bae5b7846151b27555c7bd54dee045.png,我们可以将两个图层进行混合得到图像编辑结果d9f146ff489ccbb1f213daf6686fcc1a.png,如下:

96d73152357807767e4d1c14337aab8f.png

其中 f 是一个固定的逐像素映射函数,通常由混合模式所决定。受限于转化能力,一个特定的混合模式及固定的函数 f 难以直接应用于种类多样的编辑任务中去。为了更好的适应数据的分布以及不同任务的转换模式,我们借鉴了图像编辑中常用的柔光模式,设计了一个自适应混合模块 (ABM),如下:

cc03ec72f91b0f581a69cc9d58e15f88.png

其中83124bb343e6ea447238c4095ef99587.png表示 Hadmard product,06356fb5e7b8ee784ed32bd3f3318467.png948a4f4914aa50edb830179e715ca3e9.png为可学习的参数,被网络中所有的 ABM 模块以及接下来的 R-ABM 模块所共享,19b3668c21c7e23d5235ddaf40f11796.png表示所有值为 1 的常数矩阵。

4.3.2 逆向自适应混合模块(Reverse Adaptive Blend Module)

实际上,ABM 模块是基于混合图层 B 已经获得的前提假设。然而,我们在 LRL 中只获得了低分辨率的结果a9b1287cb3ac2cd72ddcea99e62ae570.png,为了得到混合图层 B,我们对公式 3 进行求解,构建了一个逆向自适应混合模块 (R-ABM),如下:

41d0f1a751ea9ca6371770bff07bf751.png

总的来说,通过利用混合图层作为中间媒介,ABM 模块和 R-ABM 模块实现了图像 I 和结果 R 之间的自适应转换,相比于直接对低分辨率结果利用卷积上采样等操作进行向上拓展(如 Pix2PixHD),我们利用混合图层来实现这个目标,有其两方面的优势:1)在局部修饰任务中,混合图层主要记录了两张图像之间的局部转换信息,这意味着其包含更少的无关信息,且更容易由一个轻量的网络进行优化。2)混合图层直接作用于原始图像来实现最后的修饰,可以充分利用图像本身的信息,进而实现高度的细节保真。

b29ad4722d196fb1827e8df88a52ad72.png

实际上,关于自适应混合模块有许多可供选择的函数或者策略,我们在论文中对设计的动机以及其他方案的对比进行了详细介绍,这里不进行更多的阐述了,Figure 7 展示了我们的方法和其他混合方法的消融对比。

4.3.3 Refining Module

c09ea0e353fddd69e15a2850bec37566.png

4.4 损失函数

d55e4dc4226ae3cb9d61cec5e8f9711f.png

实验结果

5.1 与 SOTA 方法对比

5ec6407a291c9028e7e2033dd811e29d.png

5.2 消融实验

6c8faed4744adf298a6853dca5c8733a.png

5.3 运行速度与内存消耗

e2e9bf51186479408e0da9e4e24ee337.png

效果展示

美肤效果展示:

e1bd230becf2a226721b1da690a8f8be.png

原图像来自 unsplash [31]

ddc583c4ac9f5ccc41e3837298e7a310.png

原图像来自人脸数据集 FFHQ [32]

ee404310e293627536aa4815cf73805e.png

原图像来自人脸数据集 FFHQ [32]

可以看到,相较于传统的美颜算法,我们提出的局部修图框架在去除皮肤瑕疵的同时,充分的保留了皮肤的纹理和质感,实现了精细、智能化的肤质优化。进一步,我们将该方法拓展到服饰去皱领域,也实现了不错的效果,如下:

f4e226e5f164b5bd5c0c5336fee4088e.png

e81d086f976d643cdc9cba426afeba1d.png

七、参考文献


[1] Phillip Isola, Jun-Yan Zhu, Tinghui Zhou, and Alexei A Efros. Image-to-image translation with conditional adversarial networks. In CVPR, 2017.
[2]Qifeng Chen and Vladlen Koltun. Photographic image synthesis with cascaded refinement networks. In ICCV, 2017.
[3]Image-to-image translation with conditional adversarial networks. In CVPR, 2017.
[4]Ji Lin, Richard Zhang, Frieder Ganz, Song Han, and Jun-Yan Zhu. Anycost gans for interactive image synthesis and editing. In CVPR, 2021.
[5]Taesung Park, Ming-Yu Liu, Ting-Chun Wang, and Jun-Yan Zhu. Semantic image synthesis with spatially-adaptive normalization. In CVPR, 2019.
[6]Kyungjune Baek, Yunjey Choi, Youngjung Uh, Jaejun Yoo, and Hyunjung Shim. Rethinking the truly unsupervised image-to-image translation. In ICCV, 2021.
[7]Yunjey Choi, Minje Choi, Munyoung Kim, Jung-Woo Ha, Sunghun Kim, and Jaegul Choo. Stargan: Unified generative adversarial networks for multi-domain image-to-image translation. In CVPR, 2018.
[8]Yunjey Choi, Youngjung Uh, Jaejun Yoo, and Jung-Woo Ha. Stargan v2: Diverse image synthesis for multiple domains. pages 8188–8197, 2020.
[9]Xun Huang and Serge Belongie. Arbitrary style transfer in real-time with adaptive instance normalization. In ICCV, 2017.
[10]Leon A Gatys, Alexander S Ecker, and Matthias Bethge. Image style transfer using convolutional neural networks. In CVPR, 2016.
[11]Justin Johnson, Alexandre Alahi, and Li Fei-Fei. Perceptual losses for real-time style transfer and super-resolution. In ECCV, 2016.
[12]Artsiom Sanakoyeu, Dmytro Kotovenko, Sabine Lang, and Bjorn Ommer. A style-aware content loss for real-time hd style transfer. In ECCV, 2018.
[13]Jianrui Cai, Shuhang Gu, and Lei Zhang. Learning a deep single image contrast enhancer from multi-exposure images. TIP, 2018.
[14]Yubin Deng, Chen Change Loy, and Xiaoou Tang. Aestheticdriven image enhancement by adversarial learning. In ACM MM, 2018.
[15]Micha¨el Gharbi, Jiawen Chen, Jonathan T Barron, SamuelW Hasinoff, and Fr´edo Durand. Deep bilateral learning for realtime image enhancement. TOG, 2017.
[16]Jingwen He, Yihao Liu, Yu Qiao, and Chao Dong. Conditional sequential modulation for efficient global image retouching. In ECCV, 2020.
[17]Xiefan Guo, Hongyu Yang, and Di Huang. Image inpainting via conditional texture and structure dual generation. In ICCV, 2021.
[18]Jingyuan Li, Ning Wang, Lefei Zhang, Bo Du, and Dacheng Tao. Recurrent feature reasoning for image inpainting. In CVPR, 2020.
[19]Liang Liao, Jing Xiao, Zheng Wang, Chia-Wen Lin, and Shin’ichi Satoh. Image inpainting guided by coherence priors of semantics and textures. In CVPR, 2021.
[20]Guilin Liu, Fitsum A Reda, Kevin J Shih, Ting-Chun Wang, Andrew Tao, and Bryan Catanzaro. Image inpainting for irregular holes using partial convolutions. In ECCV, 2018.
[21]Nian Cai, Zhenghang Su, Zhineng Lin, Han Wang, Zhijing Yang, and Bingo Wing-Kuen Ling. Blind inpainting using the fully convolutional neural network. The Visual Computer, 2017.
[22]Yang Liu, Jinshan Pan, and Zhixun Su. Deep blind image inpainting. In IScIDE, 2019.
[23]YiWang, Ying-Cong Chen, Xin Tao, and Jiaya Jia. Vcnet: A robust approach to blind image inpainting. In ECCV, 2020.
[24]Jie Liang, Hui Zeng, and Lei Zhang. High-resolution photorealistic image translation in real-time: A laplacian pyramid translation network. In CVPR, 2021.
[25]Tamar Rott Shaham, Micha¨el Gharbi, Richard Zhang, Eli Shechtman, and Tomer Michaeli. Spatially-adaptive pixelwise networks for fast image translation. In CVPR, 2021.
[26]Ting-Chun Wang, Ming-Yu Liu, Jun-Yan Zhu, Andrew Tao, Jan Kautz, and Bryan Catanzaro. High-resolution image synthesis and semantic manipulation with conditional gans. In CVPR, 2018.
[27]ABPN: Adaptive Blend Pyramid Network for Real-Time Local Retouching of Ultra High-Resolution Photo, CVPR2022
[28]Justin Johnson, Alexandre Alahi, and Li Fei-Fei. Perceptual losses for real-time style transfer and super-resolution. In ECCV, 2016.
[29]Phillip Isola, Jun-Yan Zhu, Tinghui Zhou, and Alexei A Efros. Image-to-image translation with conditional adversarial networks. In CVPR, 2017.
[30]Fausto Milletari, Nassir Navab, and Seyed-Ahmad Ahmadi. V-net: Fully convolutional neural networks for volumetric medical image segmentation. In 3DV, 2016.
[31]https://unsplash.com/
[32]https://github.com/NVlabs/ffhq-dataset

 
 

点击进入—>CV微信技术交流群

CVPR/ECCV 2022论文和代码下载

 
 

后台回复:CVPR2022,即可下载CVPR 2022论文和代码开源的论文合集

后台回复:ECCV2022,即可下载ECCV 2022论文和代码开源的论文合集

后台回复:Transformer综述,即可下载最新的3篇Transformer综述PDF

目标检测和Transformer交流群成立
扫描下方二维码,或者添加微信:CVer222,即可添加CVer小助手微信,便可申请加入CVer-目标检测或者Transformer 微信交流群。另外其他垂直方向已涵盖:目标检测、图像分割、目标跟踪、人脸检测&识别、OCR、姿态估计、超分辨率、SLAM、医疗影像、Re-ID、GAN、NAS、深度估计、自动驾驶、强化学习、车道线检测、模型剪枝&压缩、去噪、去雾、去雨、风格迁移、遥感图像、行为识别、视频理解、图像融合、图像检索、论文投稿&交流、PyTorch、TensorFlow和Transformer等。
一定要备注:研究方向+地点+学校/公司+昵称(如目标检测或者Transformer+上海+上交+卡卡),根据格式备注,可更快被通过且邀请进群

▲扫码或加微信号: CVer222,进交流群
CVer学术交流群(知识星球)来了!想要了解最新最快最好的CV/DL/ML论文速递、优质开源项目、学习教程和实战训练等资料,欢迎扫描下方二维码,加入CVer学术交流群,已汇集数千人!

▲扫码进群
▲点击上方卡片,关注CVer公众号
整理不易,请点赞和在看
  • 2
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
东南亚位于我国倡导推进的“一带一路”海陆交汇地带,作为当今全球发展最为迅速的地区之一,近年来区域内生产总值实现了显著且稳定的增长。根据东盟主要经济体公布的最新数据,印度尼西亚2023年国内生产总值(GDP)增长5.05%;越南2023年经济增长5.05%;马来西亚2023年经济增速为3.7%;泰国2023年经济增长1.9%;新加坡2023年经济增长1.1%;柬埔寨2023年经济增速预计为5.6%。 东盟国家在“一带一路”沿线国家中的总体GDP经济规模、贸易总额与国外直接投资均为最大,因此有着举足轻重的地位和作用。当前,东盟与中国已互相成为双方最大的交易伙伴。中国-东盟贸易总额已从2013年的443亿元增长至 2023年合计超逾6.4万亿元,占中国外贸总值的15.4%。在过去20余年中,东盟国家不断在全球多变的格局里面临挑战并寻求机遇。2023东盟国家主要经济体受到国内消费、国外投资、货币政策、旅游业复苏、和大宗商品出口价企稳等方面的提振,经济显现出稳步增长态势和强韧性的潜能。 本调研报告旨在深度挖掘东南亚市场的增长潜力与发展机会,分析东南亚市场竞争态势、销售模式、客户偏好、整体市场营商环境,为国内企业出海开展业务提供客观参考意见。 本文核心内容: 市场空间:全球行业市场空间、东南亚市场发展空间。 竞争态势:全球份额,东南亚市场企业份额。 销售模式:东南亚市场销售模式、本地代理商 客户情况:东南亚本地客户及偏好分析 营商环境:东南亚营商环境分析 本文纳入的企业包括国外及印尼本土企业,以及相关上下游企业等,部分名单 QYResearch是全球知名的大型咨询公司,行业涵盖各高科技行业产业链细分市场,横跨如半导体产业链(半导体设备及零部件、半导体材料、集成电路、制造、封测、分立器件、传感器、光电器件)、光伏产业链(设备、硅料/硅片、电池片、组件、辅料支架、逆变器、电站终端)、新能源汽车产业链(动力电池及材料、电驱电控、汽车半导体/电子、整车、充电桩)、通信产业链(通信系统设备、终端设备、电子元器件、射频前端、光模块、4G/5G/6G、宽带、IoT、数字经济、AI)、先进材料产业链(金属材料、高分子材料、陶瓷材料、纳米材料等)、机械制造产业链(数控机床、工程机械、电气机械、3C自动化、工业机器人、激光、工控、无人机)、食品药品、医疗器械、农业等。邮箱:market@qyresearch.com

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值