视觉全新主干!中科院&华为提出VMamba:视觉状态空间模型

点击下方卡片,关注“CVer”公众号

AI/CV重磅干货,第一时间送达

点击进入—>【CV技术和求职】交流群

扫码加入CVer学术星球可以获得最新顶会/顶刊上的论文idea和CV从入门到精通资料,以及最前沿项目和应用!发论文搞科研,强烈推荐!

b72953998841c9f5d9bf5da8db8b660c.jpeg

转载自:机器之心 

Transformer 在大模型领域的地位可谓是难以撼动。不过,这个AI 大模型的主流架构在模型规模的扩展和需要处理的序列变长后,局限性也愈发凸显了。Mamba的出现,正在强力改变着这一切。它优秀的性能立刻引爆了AI圈。

上周四, Vision Mamba(Vim)的提出已经展现了它成为视觉基础模型的下一代骨干的巨大潜力。仅隔一天,中国科学院、华为、鹏城实验室的研究人员提出了 VMamba:一种具有全局感受野、线性复杂度的视觉 Mamba 模型。这项工作标志着视觉 Mamba 模型 Swin 时刻的来临。

1015fac92edcee056fdcbbd2308880e6.png

  • 论文标题:VMamba: Visual State Space Model

  • 论文地址: https://arxiv.org/abs/2401.10166

  • 代码地址: https://github.com/MzeroMiko/VMamba

CNN 和视觉 Transformer(ViT)是当前最主流的两类基础视觉模型。尽管 CNN 具有线性复杂度,ViT 具有更为强大的数据拟合能力,然而代价是计算复杂较高。研究者认为 ViT 之所以拟合能力强,是因为其具有全局感受野和动态权重。受 Mamba 模型的启发,研究者设计出一种在线性复杂度下同时具有这两种优秀性质的模型,即 Visual State Space Model(VMamba)。大量的实验证明,VMamba 在各种视觉任务中表现卓越。如下图所示,VMamba-S 在 ImageNet-1K 上达到 83.5% 的正确率,比 Vim-S 高 3.2%,比 Swin-S 高 0.5%。

26ed89c491e51a1bbd734966cf83f54a.png

方法介绍

aef9c186a22195e1716cb415dbda3de4.png

VMamba 成功的关键在于采用了 Selective Scan Space State Sequential Model(S6 模型)。该模型设计之初是用于解决自然语言处理(NLP)任务。与 ViT 中注意力机制不同,S6 将 1D 向量中的每个元素(例如文本序列)与在此之前扫描过的信息进行交互,从而有效地将二次复杂度降低到线性。

然而,由于视觉信号(如图像)不像文本序列那样具有天然的有序性,因此无法在视觉信号上简单地对 S6 中的数据扫描方法进行直接应用。为此研究者设计了 Cross-Scan 扫描机制。Cross-Scan 模块(CSM)采用四向扫描策略,即从特征图的四个角同时扫描(见上图)。该策略确保特征中的每个元素都以不同方向从所有其他位置整合信息,从而形成全局感受野,又不增加线性计算复杂度。

72a39617994f6656a7a069c6afa33cb7.png

在 CSM 的基础上,作者设计了 2D-selective-scan(SS2D)模块。如上图所示,SS2D 包含了三个步骤:

  • scan expand 将一个 2D 特征沿 4 个不同方向(左上、右下、左下、右上)展平为 1D 向量。

  • S6 block 独立地将上步得到的 4 个 1D 向量送入 S6 操作。

  • scan merge 将得到的 4 个 1D 向量融合为一个 2D 特征输出。

e06f409a057c05b4452fa4fd5e09b4e1.png

上图为本文提出的 VMamba 结构图。VMamba 的整体框架与主流的视觉模型类似,其主要区别在于基本模块(VSS block)中采用的算子不同。VSS block 采用了上述介绍的 2D-selective-scan 操作,即 SS2D。SS2D 保证了 VMamba 在线性复杂度的代价下实现全局感受野。

实验结果

ImageNet 分类

8ae24b69a968d7fe911e09240f9903ca.png

通过对比实验结果不难看出,在相似的参数量和 FLOPs 下:

  • VMamba-T 取得了 82.2% 的性能,超过 RegNetY-4G 达 2.2%、DeiT-S 达 2.4%、Swin-T 达 0.9%。

  • VMamba-S 取得了 83.5% 的性能,超过 RegNetY-8G 达 1.8%,Swin-S 达 0.5%。

  • VMamba-B 取得了 83.2% 的性能(有 bug,正确结果将尽快在 Github 页面更新),比 RegNetY 高 0.3%。

这些结果远高于 Vision Mamba (Vim) 模型,充分验证了 VMamba 的潜力。

COCO 目标检测

031cdb84c6a51b789ed37400073338b8.png

在 COOCO 数据集上,VMamba 也保持卓越性能:在 fine-tune 12 epochs 的情况下,VMamba-T/S/B 分别达到 46.5%/48.2%/48.5% mAP,超过了 Swin-T/S/B 达 3.8%/3.6%/1.6% mAP,超过 ConvNeXt-T/S/B 达 2.3%/2.8%/1.5% mAP。这些结果验证了 VMamba 在视觉下游实验中完全 work,展示出了能平替主流基础视觉模型的潜力。

ADE20K 语义分割

ec94bb0f372f0d0eacb43e6d113de6da.png

在 ADE20K 上,VMamba 也表现出卓越性能。VMamba-T 模型在 512 × 512 分辨率下实现 47.3% 的 mIoU,这个分数超越了所有竞争对手,包括 ResNet,DeiT,Swin 和 ConvNeXt。这种优势在 VMamba-S/B 模型下依然能够保持。

分析实验

有效感受野

c543bf878c774705c0c7f4fa4280b86f.png

VMamba 具有全局的有效感受野,其他模型中只有 DeiT 具有这个特性。但是值得注意的是,DeiT 的代价是平方级的复杂度,而 VMamaba 是线性复杂度。

输入尺度缩放

b328c1fe685fecda206314ea48eddfea.png

  • 上图(a)显示,VMamba 在不同输入图像尺寸下展现出最稳定的性能(不微调)。有意思的是,随着输入尺寸从 224 × 224 增加到 384 × 384,只有 VMamba 表现出性能明显上升的趋势(VMamba-S 从 83.5% 上升到 84.0%),突显了其对输入图像大小变化的稳健性。

  • 上图(b)显示,VMamba 系列模型随着输入变大,复杂性呈线性增长,这与 CNN 模型是一致的。

最后,让我们期待更多基于 Mamba 的视觉模型被提出,并列于 CNNs 和 ViTs,为基础视觉模型提供第三种选择。

在CVer微信公众号后台回复:论文,即可下载论文pdf和代码链接!快学起来!

点击进入—>【CV技术和求职】交流群

计算机视觉技术交流群成立

 
 
扫描下方二维码,或者添加微信:CVer444,即可添加CVer小助手微信,便可申请加入CVer-计算机视觉微信交流群。另外其他垂直方向已涵盖:目标检测、图像分割、目标跟踪、人脸检测&识别、OCR、姿态估计、超分辨率、SLAM、医疗影像、Re-ID、GAN、NAS、深度估计、自动驾驶、强化学习、车道线检测、模型剪枝&压缩、去噪、去雾、去雨、风格迁移、遥感图像、行为识别、视频理解、图像融合、图像检索、论文投稿&交流、PyTorch、TensorFlow和Transformer、NeRF等。
一定要备注:研究方向+地点+学校/公司+昵称(如目标检测+上海+上交+卡卡),根据格式备注,可更快被通过且邀请进群

 
 
▲扫码或加微信号: CVer444,进交流群
CVer计算机视觉(知识星球)来了!想要了解最新最快最好的CV/DL/AI论文速递、优质实战项目、AI行业前沿、从入门到精通学习教程等资料,欢迎扫描下方二维码,加入CVer计算机视觉(知识星球),已汇集近万人!

▲扫码加入星球学习
 
 
▲点击上方卡片,关注CVer公众号
整理不易,请点赞和在看
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值