一口气看8页!旷视提出Fox:图文并茂的文档交互式多模态大模型

点击下方卡片,关注“CVer”公众号

AI/CV重磅干货,第一时间送达

点击进入—>【Mamba/扩散/多模态】交流群

添加微信:CVer5555,小助手会拉你进群!

扫描下方二维码,加入CVer学术星球!可以获得最新顶会/顶刊上的论文idea和CV从入门到精通资料,及最前沿应用!发论文/搞科研/涨薪,强烈推荐!

d95da4afcb4fb542b9652f58c6cab8b9.jpeg

导读

 

最近,旷视打造了一支多模态大模型的“点读笔”-Fox,轻松实现对8页文档(中英混合,单栏多栏格式混合的极端场景)的交互式感知理解。 

1a5cd2b2e1d9f8534ea091da187f6d5a.png

最近,旷视打造了一支多模态大模型的“点读笔”-Fox,轻松实现对8页文档(中英混合,单栏多栏格式混合的极端场景)的交互式感知理解。

对于信息密集的PDF文档,Fox支持高可控性的细粒度理解,比如在用户感兴趣区域内进行文字识别、段落翻译以及页面内部的图片内容描述等。

“一图胜千言”—— one image token >> one text token。本文中,我们进一步突破了对于文档的视觉感知理解的上限,高密度的信息被真正压缩,LVLM真正地“看”懂图,才能真正做好、做出能用的文档多模大模型。更多细节请看我们的paper。

28cd4419699be6c3939d35218dff5463.png

论文地址:https://arxiv.org/abs/2405.14295

代码地址:https://github.com/ucaslcl/Fox

项目主页:https://ucaslcl.github.io/foxhome/

Fox的效果展示:

(1)中英混合、单栏多栏混合的8页PDF文档,任意区域的OCR:

807156cd7aeab7fd0134f07cb5de6c0e.png

(2)下图左侧展示了8页文档内跨页的VQA。右侧展示了双栏中文页面的前景OCR。

726489cc1e15f54ce01b349a96a88fe1.png

(3)双栏密集英文页面的前景OCR:

861b2ba6aa2c85fe1b155f5c6b633d00.png

(4)页面内图片描述: Fox能给出文档内内容关联的回答(young Dual Language Learners)。当然Fox还支持line-level OCR,以及对RoI区域的翻译、总结等。

81fe03d244f5ad581eb3c9b199c13440.png

(5)Fox可以结合页面内文字,认识到这是一张关于global seismic hazards的图。此外,Fox还支持RoI内的latex格式转换,例如下面的table转latex。Fox还支持更加灵活的颜色引导的RoI区域OCR

4efd6230f0ac849ebae504d2f087c701.png

(6)对于卡通绘本,也可以哪里不会点哪里:

60056d2abbc0553632c83d2f659a512a.png

(7)电影海报和自然场景的对话问答,Fox给出了非常有趣的答案(根据电影海报下面的文字给出了角色来源):

89b59948e7f9d6e4d5933542408910b7.png

方法简介

de8296deaa473fdde302d78ed4e405ad.png

Fox的模型结构如上图所示。Fox支持单页/多页文档图像输入,所有图像的image token被统一到一个sequence中进行多页文档理解。我们设计了基于point、color、box的prompt,来实现在文档页面上聚焦任意位置。我们合成了图文交织的文档数据,来充分催化两个视觉词表,以更好地适用于实际文档应用场景。

此外,为了促进对文档细粒度理解的研究,作者还打造了一个中英双语的benchmark,已经开源了数据和评测代码,共包含以下9种任务:
(1) Page-level OCR
(2) Region-level OCR
(3) Line-level OCR
(4) Color-guided OCR
(5) Region-level translation
(6) Region-level summary
(7) In-document figure caption
(8) Multi-page multi-region OCR
(9) Cross-page VQA

总结

我们呼吁更多的研究人员能关注到细粒度的单页/多页文档理解,单页的稀疏的问答任务远远不够。

真正做好多模态大模型,视觉编码器的信息压缩率(token转化率)是非常重要的,Fox仅探究了文档这一类应用方向。希望对大家的研究有所帮助!

何恺明在MIT授课的课件PPT下载

在CVer公众号后台回复:何恺明,即可下载本课程的所有566页课件PPT!赶紧学起来!

CVPR 2024 论文和代码下载

在CVer公众号后台回复:CVPR2024,即可下载CVPR 2024论文和代码开源的论文合集

Mamba、多模态和扩散模型交流群成立

 
 
扫描下方二维码,或者添加微信:CVer5555,即可添加CVer小助手微信,便可申请加入CVer-Mamba、多模态学习或者扩散模型微信交流群。另外其他垂直方向已涵盖:目标检测、图像分割、目标跟踪、人脸检测&识别、OCR、姿态估计、超分辨率、SLAM、医疗影像、Re-ID、GAN、NAS、深度估计、自动驾驶、强化学习、车道线检测、模型剪枝&压缩、去噪、去雾、去雨、风格迁移、遥感图像、行为识别、视频理解、图像融合、图像检索、论文投稿&交流、PyTorch、TensorFlow和Transformer、NeRF、3DGS、Mamba等。
一定要备注:研究方向+地点+学校/公司+昵称(如Mamba、多模态学习或者扩散模型+上海+上交+卡卡),根据格式备注,可更快被通过且邀请进群

 
 
▲扫码或加微信号: CVer5555,进交流群
CVer计算机视觉(知识星球)来了!想要了解最新最快最好的CV/DL/AI论文速递、优质实战项目、AI行业前沿、从入门到精通学习教程等资料,欢迎扫描下方二维码,加入CVer计算机视觉(知识星球),已汇集近万人!

▲扫码加入星球学习
 
 
▲点击上方卡片,关注CVer公众号
整理不易,请点赞和在看
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值