ECCV 2024 | 新突破!DepictQA:图像质量感知的多模态大语言模型

点击下方卡片,关注“CVer”公众号

AI/CV重磅干货,第一时间送达

点击进入—>【Mamba/多模态/扩散】交流群

添加微信号:CVer111,小助手会拉你进群!

扫描下方二维码,加入CVer学术星球!可以获得最新顶会/顶刊上的论文idea和CV从入门到精通资料,及最前沿应用!发论文/搞科研/涨薪,强烈推荐!

400096819212d60e816d3ca32748b814.png

作者:1335(已授权CVer转载)

https://zhuanlan.zhihu.com/p/709398906

为什么会做这个项目?

图像质量感知是一个宏大而复杂的课题。比如:

  • 图像是细节越多越好吗?

并不是。很多人都会喜欢湛蓝纯净的天空。因此,在飘了一些淡淡的云彩的天空中加入blur,使得天空的颜色更加均匀,人看起来反而更好看。

  • 失真一定会带来低质量吗?

并不是。如下图所示,右图是在左图的基础上添加噪声得到的。但是在这种情况下,噪声可以使手部皮肤看起来更加真实,而左图则显得过度平坦化。在这种情况下,噪声使图像更加真实。

0097c7d5f147e121f1442627cadb66b5.jpeg

图片来源:https://medium.com/photo-dojo/dont-fear-the-grain-263a37a64b87

很容易发现,图像质量感知与图像的局部内容是强相关的,甚至是与个人的喜好强相关的。

那么,如何刻画如此复杂的质量感知呢?

现有的图像质量评价 (IQA) 方法使用score来描述图像质量,可以直接用于对比不同模型的性能,被广泛地作为metric或者loss使用,促进了图像生成、修复等领域的发展。但是,score这种描述形式是图像质量感知的一个综合的方面,其表达能力的上限是不足的,无法刻画复杂的局部性和内容相关性。

在大语言模型 (LLM) 和多模态语言模型 (MLLM) 出现后,我们希望语言成为描述图像质量感知这个复杂问题的工具,这也是这一系列工作的初衷。

项目主页:depictqa.github.io

代码:github.com/XPixelGroup/DepictQA

huggingface.co/datasets/zhiyuanyou/DataDepictQA

TL;DR

  1. DepictQA是基于多模态语言模型 (MLLM) 的图像质量感知方法。我们希望借助MLLM,对图像质量进行类似于人类的、基于语言的描述。

  2. DepictQA-v1。为了验证MLLM感知图像质量的可行性,我们 (1) 构造了full-reference下的任务框架,(2) 构建了一个包括 大量的、简短的、模版化的构造数据 + 少部分的、详细的、人工标注的数据 组成的数据集,(3) 训练了一个MLLM,验证了MLLM感知图像质量的可行性。

  3. DepictQA-v2。在可行性验证之后,我们希望拓展模型的适用范围,进行了 (1) 任务框架的拓展 (任务类型从3种到8种),(2) 数据集的scaling up (detail数据从5K到56K),实现了 (3) 在自然图像上具有一定的泛化性。

1b0d5789df2050ce404c22b9dcba091d.jpeg

图1:DepictQA-v1作者与机构。
论文:arxiv.org/abs/2312.08962

014f15745d852013b0fadcb33365792e.jpeg

图2:DepictQA-v2作者与机构。
论文:arxiv.org/abs/2405.18842

Motivation: Score-based质量感知方法的局限性

现有的图像质量感知方法主要是score-based方法。这些方法输出一个score来描述图像质量,可以用于对比不同模型的性能,被广泛地作为metric或者loss使用,促进了图像生成、修复等领域的发展。

虽然取得了如此巨大的成功,我们认为score的描述形式限制了更深层次的质量感知。

  • 首先,图像质量包括了很多的因素,这些因素无法通过一个简单的score有效表达,例如图3中的噪声、色彩失真和伪影等。

  • 其次,score无法模拟人类的感知过程。例如,在图3(b)中,人类一般首先识别图像的失真(即图像A中的噪声、图像B中的色彩失真和伪影),然后权衡这些失真对内容表达的影响(图像B中的色彩失真和伪影比图像A中的噪声更严重),最后得出结论 (图像A比图像B更好) 。但是,简单地对比score来判断好坏无法反应出人类复杂的感知过程。

最近,以ChatGPT为代表的大语言模型 (LLM) 将深度学习带入了大模型时代,随之出现的多模态大语言模型 (MLLM) 可以使用语言对图像的内容进行详细的描述。因此,我们希望探究基于MLLM、使用语言对于图像质量进行描述的方法。

4e156e05a5accc15c5e1d829d2a02449.jpeg

图3:DepictQA-v1与score-based方法的比较。Score-based方法仅输出score,缺乏推理过程。DepictQA-v1识别图像的失真,权衡不同失真对纹理的影响,得出与人类判断更一致的结果。

354bab6bba0f6dfa39e45ad42e174b2b.jpeg

图4:DepictQA-v2的定性结果。DepictQA-v2能够准确识别失真类型,分析失真类型对于图像内容的影响,得出质量评估或者质量对比的结论。

DepictQA-v1

任务定义

我们建立了一个包括三个任务的任务框架。

  • 质量描述。模型应该能够感知图像失真。如图5(a),给出参考图像和一张失真图像,模型需要描述失真图像中的失真和纹理损伤,并判断失真图像的整体质量。

  • 质量对比。模型应该能直接对比两张图像的好坏。如图5(b),给出参考图像和两张不同的失真图像,模型需要确定哪一张失真图像的质量更好。

  • 对比归因。模型应该能对两张图像的好坏进行判断并归因。如图5(c),模型需要描述两张失真图像的失真和纹理损伤,并推理权衡利弊,对比图像质量的好坏。该任务是质量描述和质量对比的综合。

e829313102c4d317776d4f3b739932d1.jpeg

图5:DepictQA-v1任务定义与数据收集。

数据收集

  • 人工标注选项 + GPT-4语言化

在DepictQA-v1收集数据时,GPT-4V等强多模态模型还没有出现。我们设计了人工标注选项 + GPT-4语言化的数据策略。如图5所示,我们设计了由选择题构成的问卷,标注员标注问卷后,GPT-4将问卷的标注结果组合成语言,由此构造图像文本对。

大量的、简短的、模板化回答 + 少部分的、详细的回答

人工标注数据是详细的,但是费时费力获取难度大。因此,我们将已有的包含score的数据集转化为文本,构造大量的、简短的、模版化的数据。比如,图像A的score比图像B高,可以转化为"Image A maintains a better quality than Image B"。将模版化数据 + 详细数据混合训练,对于对比精度和归因准确性都有一定提升。

模型训练

如图6所示,我们采用了LLaVA框架,包括image encoder、image projector、LLM三部分。

  • 区分多张图像

LLaVA的输入是单张图像,而我们涉及到多张图像。如何让模型区别多张图像是十分重要的。我们测试了4种区分多种图像的方法,并根据结果选择了textual hint + tag hint的方法。

8fff23955bd544401f71cfb6b6f51239.jpeg

图6:DepictQA-v1模型架构。
  • 加入high-level数据作为正则化

质量相关的描述语言是单一的,包括的独立词汇量偏少。仅仅用这些数据训练,模型存在过拟合、说套话、重复说话的问题。因此,我们在训练过程中加入了LAMM引入的COCO详细描述数据作为正则化。

实验结果

  • 在双图对比、多图对比 (双图对比的拓展) 上,超越了经典的score-based方法。

5f92e694b9175ed87eba4e6903998b0b.jpeg
  • 在质量描述和对比归因上,通用MLLMs不具有质量感知能力,而DepictQA-v1体现出了一定的质量感知能力。

1c922227d1bed7d6727e7975fb289963.jpeg

DepictQA-v2

任务定义

DepictQA-v1主要关注了full-reference设置下的3种任务。在DepictQA-v2中,我们对任务定义进行了拓展,从3种任务扩展到8种任务,提出了一个多任务的框架。如图7所示,拓展后的任务框架包括了单图评估和双图对比两大类任务,每类任务都包括了brief和detail两个子任务,支持full-reference和non-reference设置。

8b7437c633acdd8410f4b6cef2ee5f44.jpeg

图7:DepictQA-v2任务定义。

数据收集

  • 更全面的自然图像。我们选择了KADIS-700K作为高质量图像的来源,一共包括了140K的高质量图像。

  • 更全面的失真类型。我们构建了一个全面的失真库,包括了35种失真类型,每种类型包括了5个等级。

  • 更大尺度的数据量。我们将detail数据从DepictQA-v1的5K扩增到了56K,相应地,brief的数据也扩增到了440K。

  • 更合理的数据生成。在构造DepictQA-v2的数据集时,GPT-4V等强多模态模型已经出现。Co-Instruct直接采用了GPT-4V构造数据。虽然GPT-4V具有强大的内容识别、逻辑推理能力,但是其失真识别、质量对比能力都是不足的。因此,如图8所示,我们提出ground-truth-informed生成方法,将失真识别和质量对比的结果直接加入GPT-4V的prompt中,提升了生成数据的质量。

a6576ff100fcc0ec18e6020b3a0178f7.jpeg

图8:DepictQA-v2数据收集。

模型训练

我们采用了DepictQA-v1的模型架构。

  • 图像分辨率的适应。由于图像的分辨率以及比例也是质量的重要部分,我们提出对于clip image encoder的位置编码进行差值,而保留图像的原始分辨率和比例。

  • 置信度的计算。MLLM的response缺乏一个良好的置信度。我们提取了response中的key tokens,计算了key tokens的预测概率作为置信度。

实验结果

  • 在失真识别上,超越了通用MLLMs、以及已有的MLLM-based质量感知模型。

c33cdf8dc437b5c3ee0c8415812d2922.jpeg
  • 在直接对比上,超越了score-based方法、通用MLLMs、以及已有的MLLM-based质量感知模型。

6a1a74a10ef9001b2cff36d2a4dc521c.jpeg
  • 在评估归因和对比归因上,超越了通用MLLMs、以及已有的MLLM-based质量感知模型。

a700a3122b2f8fa6f6718ef9537d03b5.jpeg
  • 在web下载的真实图像上也体现出较好的泛化性。

ee144f00d8e46a862482b401adb7821c.jpeg

图9:DepictQA-v2在真实图像上的质量感知结果。
  • 模型预测的置信度与模型性能的一致程度非常高。

192dd92def770bd787673c657902a027.jpeg

图10:置信度与模型性能的一致程度非常高。


不足与未来的工作

在这两篇工作中,我们展示了使用MLLMs描述图像质量的可能性。但是,MLLM-based图像质量感知模型的落地应用仍有很长的路要走。

  • 数据的数量和覆盖范围不足,限制了模型的泛化性能。尽管DepictQA-v2已经进行了数据集的scaling up,但是对于非自然图像,其泛化性能依然不足。

  • MLLM-based方法的应用不像score-based方法那么自然。Score可以被直接对比选择更优的模型,但语言不能被直接对比。Score也可以被用作loss优化模型,但语言目前还不具有这种特性。因此,质量感知的语言能否被输入生成模型或者修复模型用于质量提升,还需要进一步的探索。

何恺明在MIT授课的课件PPT下载

 
 

在CVer公众号后台回复:何恺明,即可下载本课程的所有566页课件PPT!赶紧学起来!

ECCV 2024 论文和代码下载

在CVer公众号后台回复:ECCV2024,即可下载ECCV 2024论文和代码开源的论文合集

CVPR 2024 论文和代码下载

在CVer公众号后台回复:CVPR2024,即可下载CVPR 2024论文和代码开源的论文合集

Mamba、多模态和扩散模型交流群成立

 
 
扫描下方二维码,或者添加微信号:CVer111,即可添加CVer小助手微信,便可申请加入CVer-Mamba、多模态学习或者扩散模型微信交流群。另外其他垂直方向已涵盖:目标检测、图像分割、目标跟踪、人脸检测&识别、OCR、姿态估计、超分辨率、SLAM、医疗影像、Re-ID、GAN、NAS、深度估计、自动驾驶、强化学习、车道线检测、模型剪枝&压缩、去噪、去雾、去雨、风格迁移、遥感图像、行为识别、视频理解、图像融合、图像检索、论文投稿&交流、PyTorch、TensorFlow和Transformer、NeRF、3DGS、Mamba等。
一定要备注:研究方向+地点+学校/公司+昵称(如Mamba、多模态学习或者扩散模型+上海+上交+卡卡),根据格式备注,可更快被通过且邀请进群

 
 
▲扫码或加微信号: CVer111,进交流群
CVer计算机视觉(知识星球)来了!想要了解最新最快最好的CV/DL/AI论文速递、优质实战项目、AI行业前沿、从入门到精通学习教程等资料,欢迎扫描下方二维码,加入CVer计算机视觉(知识星球),已汇集上万人!

▲扫码加入星球学习
 
 
▲点击上方卡片,关注CVer公众号
整理不易,请赞和在看
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值